Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T01:21:44.155Z Has data issue: false hasContentIssue false

The diet of Leptomeryx sp. from the Late Eocene Yolomécatl Formation, NW Oaxaca, Sierra Madre del Sur Morphotectonic Province, SE México and its palaeoecological significance

Published online by Cambridge University Press:  11 September 2017

ISMAEL FERRUSQUÍA-VILLAFRANCA*
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, Circuito de la Investigación Sin Número, Ciudad Universitaria, Coyoacán, Ciudad de México, CP 04510, México
VÍCTOR ADRIÁN PÉREZ-CRESPO
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, Circuito de la Investigación Sin Número, Ciudad Universitaria, Coyoacán, Ciudad de México, CP 04510, México
JOSÉ E. RUIZ-GONZÁLEZ
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, Circuito de la Investigación Sin Número, Ciudad Universitaria, Coyoacán, Ciudad de México, CP 04510, México
ENRIQUE MARTÍNEZ-HERNÁNDEZ
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, Circuito de la Investigación Sin Número, Ciudad Universitaria, Coyoacán, Ciudad de México, CP 04510, México
PEDRO MORALES-PUENTE
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, Circuito de la Investigación Sin Número, Ciudad Universitaria, Coyoacán, Ciudad de México, CP 04510, México Laboratorio Nacional de Geoquímica y Mineralogía-LANGEM, Ciudad de México, CP 04510, México
*
Author for correspondence: ismaelfv@unam.mx

Abstract

The diet and habitat of Leptomeryx sp. from the Late Uintan Yolomécatl Formation of NW Oaxaca, SE Mexico were inferred using dental enamel carbon and oxygen isotopic relationships, and compared with those of congeneric species from temperate North America. Results show that Leptomeryx sp. fed on C3 plants and lived in open forest or forest/savanna ecotone. The palynoflora and co-occurrence of perissodactyls and artiodactyls that live in an environment like that of Leptomeryx support this interpretation. Further, both records disclose that in NW Oaxaca (southern North America) tropical conditions prevailed at that time, unlike that of temperate North America.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrade, J. L., de la Barrera, E., Reyes-García, C., Ricalde, M. F., Vargas-Soto, G. & Cervera, C. J. 2007. El metabolismo ácido de las crasuláceas: Diversidad, fisiología ambiental y productividad. Boletín de la Sociedad Botánica de México 87, 3750.Google Scholar
Andrews, P. & Hixson, S. 2014. Taxon-free methods of palaeoecology. Annales Zoologici Fennici 51, 269–84.Google Scholar
Black, C. C. & Stephens, J. J. III 1973. Rodents from the Paleogene of Guanajuato, Mexico. Occasional Papers of the Museum of Texas Technical University 14, 110.Google Scholar
Boardman, G. S. 2013. Paleoecology of Nebraska's ungulates during the Eocene-Oligocene climate transitions. Ph.D. thesis, University of Nebraska, Nebraska, USA. Published thesis.Google Scholar
Boardman, G. S. & Secord, R. 2013. Stable isotope paleoecology of White River during the Eocene-Oligocene climate transitions in the Northwestern Nebraska. Palaeogeography, Palaeoclimatology, Palaeoecology 375, 3849.CrossRefGoogle Scholar
Bocherens, H., Koch, P. L., Mariotti, A., Geraads, D. & Jeager, J. J. 1996. Isotopic biogeochemistry (δ13C, δ18O) of mammalian enamel from African Pleistocene hominid sites. Palaios 11, 306–18.Google Scholar
Bottrell, P. M. 2009. Stable isotopes evidence on the diet and habitat preferences of Eocene Amynodontid Amynodontopsis bodei. Master of Science thesis, University of Wyoming, Wyoming, USA. Published thesis.Google Scholar
Castillo, R., Morales, P. & Ramos, S. 1985. El oxígeno- 18 en las aguas meteóricas de México. Revista Mexicana de Física 31, 637–47.Google Scholar
Cerling, T. E. 1999. Paleorecords of C4 plants and ecosystems. In C4 Plant Biology (eds Sage, R. F. & Monson, R. K.), pp. 445–69. San Diego: Academic Press.Google Scholar
Cerling, T. E. & Harris, J. M. 1999. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347–63.CrossRefGoogle ScholarPubMed
Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V. & Ehleringer, J. R. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–8.Google Scholar
Clark, J., Beerbower, J. R. & Kietze, K. K. 1967. Oligocene Sedimentation, Stratigraphy, Paleoecology and Paleoclimatology in the Big Badlands of South Dakota. Field Museum of Natural History, Chicago, Fieldiana Geology Memoir no. 5, 158 pp.Google Scholar
Coplen, T. B. 1988. Normalization of oxygen and hydrogen isotope data. Chemical Geology 72, 293–7.Google Scholar
Coplen, T. B., Brand, W. A., Gehre, M., Gröning, M., Meijer Harro, A. J., Toman, B. & Verkouteren, R. M. 2006. New guidelines for δ13C measurements. Analytical Chemistry 78, 2439–41.CrossRefGoogle ScholarPubMed
Damuth, J. 1990. Problems in estimating body masses of archaic ungulates using dental measurements. In Body Size in Mammalian Paleobiology: Estimation and Biological Implications (eds Damuth, J. & MacFadden, B. J.), pp. 229–53. Cambridge: Cambridge Universtiy Press.Google Scholar
Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus 16, 436–68.Google Scholar
Evans, A. R. & Janis, C. M. 2014. The evolution of high dental complexity in the horses lineage. Annales Zoologici Fennici 51, 73–9.Google Scholar
Faure, G. 1977. Principles of Isotope Geology. New York: John Wiley & Sons, 589 pp.Google Scholar
Ferrusquía-Villafranca, I. 1969. Rancho Gaitan local fauna, northeastern Chihuahua. Boletín de la Sociedad Geológica Mexicana 30, 99138.Google Scholar
Ferrusquía-Villafranca, I. 1989. A new rodent genus from Central México and its bearing on the origin of the Caviomorpha. In Paper on Fossil Rodents in Honor of Albert Elmer Wood (eds Black, C. C. & Dawson, M. R.), pp. 91117. Natural History Museum, Los Angeles, Science Series 33.Google Scholar
Ferrusquía-Villafranca, I., Galindo-Hernández, C. & Barrios-Rivera, H. 1997. Los mamíferos oligocénicos de México: revisión y adición a la Fauna Local Rancho Gaitán, Formación Prietos, Chadroniano de Chihuahua nororiental. In Homenaje al Profesor Ticul Álvarez (eds Arroyo-Cabrales, J. & Polaco, O. J.), pp. 97134. Instituto Nacional de Antropología e Historia, Mexico, Colección Científica.Google Scholar
Ferrusquía-Villafranca, I., Jiménez-Hidalgo, E., Ortiz-Mendieta, J. A. & Bravo-Cuevas, V. M. 2002. El registro paleogénico de mamíferos de México y su significación geológico-paleontológica. In Avances en los Estudios Paleomastozoológicos en México (coords Montellano-Ballesteros, M. & Arroyo-Cabrales, J.), pp. 2545. Instituto Nacional de Antropología e Historia, Mexico, Colección Científica.Google Scholar
Ferrusquía-Villafranca, I., Ruíz-González, J. E., Torres-Hernández, J. R., Anderson, T. H., Urrutia-Fucugauchi, J., Martínez-Hernández, E. & García-Villegas, F. 2016. Cenozoic geology of Yolomécatl-Tlaxiaco area, northwestern Oaxaca, southeastern México: Stratigraphy, structure and regional significance. Journal South of America Earth Sciences 72, 191226.Google Scholar
Fries, C. Jr., Hibbard, C. W. & Dunkle, D. H. 1955. Early Cenozoic vertebrates in the Red Conglomerate at Guanajuato, Mexico. Smithsonian Miscellaneous Collections 123, 125.Google Scholar
Gröcker, D. R. 1997. Stable-isotopic studies on the collagenic and hydroxylapatite components of fossils: Palaeoecological implications: Lethaia 30, 6578.CrossRefGoogle Scholar
Jiménez-Hidalgo, E., Smith, K. T., Guerrero-Arenas, R. & Alvarado-Ortega, J. 2015. The first Late Eocene continental faunal assemblage from tropical North America. Journal of South American Earth Sciences 57, 3948.CrossRefGoogle Scholar
Koch, P. L. 1998. Isotopic reconstruction of past continental environments. Annual Review of Earth and Planetary Sciences 26, 573613.Google Scholar
Koch, P. L., Tuross, N. & Fogel, M. L. 1997. The effects of simple treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. Journal of Archaeological Science 24, 417–29.Google Scholar
Kohn, M. J. 1996. Predicting animal δ18O: accounting for diet and physiological adaptation. Geochemical et Cosmochimica Acta 60, 4811–29.Google Scholar
Lukens, W. E. 2013. Paleopedology and paleogeomorphology of the Early Oligocene Orella and Whitney member, Brule Formation, White River Group, Toadstool Geology Park, Nebraska. Master of Science thesis, Temple University, Philadelphia, USA. Published thesis.Google Scholar
MacFadden, B. & Cerling, T. E. 1996. Mammalian herbivore communities, ancient feeding ecology, and carbon isotopes: a 10 million-year sequence from the Neogene of Florida. Journal of Vertebrate Paleontology 16, 103–15.Google Scholar
Mathis, J. E. & MacFadden, B. J. 2010. Quantify Leptomeryx (Mammalian: Artiodactyla) enamel surface are across the Eocene-Oligocene transition in Nebraska. Palaios 25, 682–7.Google Scholar
Medrano, H. & Flexas, J. 2000. Fotorrespiración y mecanismos de concentración del dióxido de carbono. In Fundamentos de Fisiología Vegetal (eds Azcón-Bieto, J. & Talón, M.), pp. 187201. Madrid: McGraw-Hill Interamericana.Google Scholar
Montellano-Ballesteros, M. & Jiménez-Hidalgo, E. 2006. Mexican fossil mammals: Who, where and when. In Studies on Mexican Paleontology (eds Vega, F. J., Nyborg, T. G., Perilliat, M. C., Montellano-Ballesteros, M., Cevallos-Ferriz, S. R. S. & Quiroz-Barroso, S. A.), pp. 249273. The Netherlands: Springer.Google Scholar
Morán-Zenteno, D. J., Cerca, M. & Keppie, J. D. 2007. The Cenozoic tectonic and magmatic evolution of southwestern México: Advances and problems of interpretation. Special Paper of the Geological Society of America 422, 7191.Google Scholar
Nieto-Samaniego, A. F., Alaniz-Alvarez, S. A., Silva-Romo, G., Equiza-Castro, M. H. & Mendoza-Rosales, C. C. 2006. Latest Cretaceous to Miocene deformation events in the eastern Sierra Madre del Sur, Mexico, inferred from the geometry and age of major structures. Bulletin of the Geological Society of America 118 (1–2), 238–52.Google Scholar
Novacek, M. J., Ferrusquía-Villafranca, I., Flynn, J. J., Wyss, A. R. & Norell, M. 1991. Wasatchian (Early Eocene) mammals and other vertebrates from Baja California, Mexico: The Lomas Las Tetas de Cabra Fauna. American Museum of Natural History Bulletin 208, 188.Google Scholar
O'Leary, M. H. 1988. Carbon isotopes in photosynthesis. Bioscience 38, 328–36.CrossRefGoogle Scholar
Retallack, G. J. 1983. Late Eocene and Oligocene paleosols from Badlands National Park, South Dakota. Geological Society of America Special Paper 193, 182.Google Scholar
Révész, K. M. & Landwehr, J. M. 2002. δ13C and δ18O isotopic composition of CaCO3 measured by continuous flow isotope ratio mass spectrometry: statistical evaluation and verification by application to Devils Hole core DH–11 calcite. Rapid Communications in Mass Spectrometry 16, 2102–14.Google Scholar
Sánchez, B. 2005. Reconstrucción del ambiente de mamíferos extintos a partir del análisis isotópico de los restos esqueléticos. In Nuevas Técnicas Aplicadas al Estudio de los Sistemas Ambientales: Los Isótopos Estables (eds Alcorno, P., Redondo, R. & Toledo, J.), pp. 4964. Madrid: Universidad Autónoma de Madrid.Google Scholar
Schoeninger, M. J., Kohn, M. & Valley, J. W. 2000. Tooth oxygen isotopes ratios as paleoclimate monitors in arid ecosystems. In Biogeochemical Approaches to Paleodietary Analysis (eds Ambrose, S. H. & Katzemberg, M. A.), pp. 117–40. New York: Kluwer Academic/Plenum Publisher.Google Scholar
Shackelton, A. L. 2016. Regional and stratigraphic variability of microwear on the molars of Leptomeryx from Eocene-Oligocene strata of Wyoming and Nebraska. Master Thesis, Temple University, Philadelphia, USA. Published thesis.Google Scholar
Smith, B. N. & Epstein, S. 1971. Two categories of 13C/12C ratios for higher plants. Plant Phyisiology 47, 380–4.Google Scholar
Sponheirmer, M. & Lee-Thorp, J. A. 1999. Oxygen isotopes in enamel carbonate and their ecological significance. Journal of Archaeological Science 26, 723–8.CrossRefGoogle Scholar
van der Merwe, N. J. & Medina, E. 1989. Photosynthesis and 13C/12C ratios in Amazonian rain forest. Geochimica et Cosmochimica Acta 53, 1091–4.Google Scholar
van der Merwe, N. J. & Medina, E. 1991. The canopy effect, carbon isotopes ratios and foodwebs in Amazonia. Journal of Archaeological Science 18, 249–59.Google Scholar
Wall, W. P. & Collins, C. M. 1998. A comparison of feeding adaptations in two primitive ruminants, Hypertragulus and Leptomeryx, from the Oligocene deposits of Badlands National Park. National Park Service Paleontological Research 1, 13–7.Google Scholar
Webb, S. D. 1998. Hornless ruminants. In Evolution of Tertiary Mammals of North America (eds Janis, C. M., Scott, K. M. & Jacobs, J. L.), pp. 463–90. Cambridge: Cambridge University Press.Google Scholar
Werner, R. A. & Brand, W. A. 2001. Referencing strategies and techniques in stable isotope ratio analysis. Rapid Communications in Mass Spectrometry 15, 501–19.Google Scholar
Zanazzi, A. & Kohn, M. J. 2008. Ecology and physiology of White River mammals based on stable isotopes ratios of teeth. Palaeogeography, Palaeoclimatology, Palaeoecology 57, 2237.Google Scholar
Supplementary material: File

Ferrusquía-Villafranca et al supplementary material 1

Ferrusquía-Villafranca et al supplementary material

Download Ferrusquía-Villafranca et al supplementary material 1(File)
File 85 KB