Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T10:08:54.724Z Has data issue: false hasContentIssue false

Dinocyst stratigraphy of the Valanginian–Aptian Rurikfjellet and Helvetiafjellet formations on Spitsbergen, Arctic Norway

Published online by Cambridge University Press:  11 February 2020

Kasia K. Śliwińska*
Affiliation:
Department of Stratigraphy, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
Mads E. Jelby
Affiliation:
Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
Sten-Andreas Grundvåg
Affiliation:
Department of Geosciences, UiT The Arctic University of Norway, P.O. Box 6050, Langnes, N-9037 Tromsø, Norway
Henrik Nøhr-Hansen
Affiliation:
Department of Stratigraphy, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
Peter Alsen
Affiliation:
Department of Stratigraphy, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
Snorre Olaussen
Affiliation:
Department of Arctic Geology, The University Centre in Svalbard (UNIS), P.O. Box 156, N-9171 Longyearbyen, Norway
*
Author for correspondence: Kasia K. Śliwińska, Email: kksl@geus.dk

Abstract

In order to improve the understanding of how the high northern latitudes responded to the escalating warming which led to the middle Cretaceous super greenhouse climate, more temperature proxy records from the High Arctic are needed. One of the current obstacles in obtaining such records is poor age control on the Lower Cretaceous strata in the Boreal region. Here, we provide a biostratigraphic framework for the Rurikfjellet and Helvetiafjellet formations representing the lower part of the Lower Cretaceous succession on Spitsbergen. We also attempt to date the boundary between the Agardhfjellet and the Rurikfjellet formations. This study is based on dinoflagellate cysts (dinocysts) from three onshore cores (DH1, DH2 and DH5R) and three outcrop sections (Bohemanflya, Myklegardfjellet and Ullaberget). Relatively abundant and well-preserved dinocyst assemblages from the Rurikfjellet Formation date this unit as early Valanginian – early Barremian. The dinocyst assemblages from the Helvetiafjellet Formation are significantly impoverished and are characterized by reworking, but collectively indicate a Barremian–Aptian age for this formation.

Type
Original Article
Copyright
© Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberti, G (1959) Zur Kenntnis der Gattung Deflandrea Eisenack (Dinoflag.) in der Kreide und im Alttertiär Nord- und Mitteldeutschlands. Mitteilungen aus dem Geologischen Staatsinstitut in Hamburg 28, 93105.Google Scholar
Alberti, G (1961) Zur Kenntnis mesozoischer und alttertiärer Dinoflagellaten und Hystrichosphaerideen von Nord- und Mitteldeutschland sowie einigen anderen europäischen Gebieten. Palaeontographica, Abteilung A 116, 158.Google Scholar
Alsen, P, Jelby, ME, Śliwińska, KK and Mutterlose, J (2019) An Early Cretaceous stratigraphic marker fossil in the High Arctic: the belemnite Arctoteuthis bluethgeni. Geological Magazine, published online 8 October 2019. doi: 10.1017/S0016756819000803.CrossRefGoogle Scholar
Århus, N (1988) Palynostratigraphy of some Bathonian–Hauterivian sections in the Arctic, with emphasis on the Janusfjellet Formation type section, Spitsbergen. IKU-Report 23.1252.11/01/88. Trondheim: Institutt for Kontinentalsokkelundersøkelser og Petroleumsteknologi, 139 pp.Google Scholar
Århus, N (1991) Dinoflagellate cyst stratigraphy of some Aptian and Albian sections from North Greenland, southeastern Spitsbergen and the Barents Sea. Cretaceous Research 12, 209–25. doi: 10.1016/0195-6671(91)90035-B.CrossRefGoogle Scholar
Århus, N (1992) Some dinoflagellate cysts from the Lower Cretaceous of Spitsbergen. Grana 31, 305–14. doi: 10.1080/00173139209429453.CrossRefGoogle Scholar
Århus, N, Kelly, SRA, Collins, JSH and Sandy, MR (1990) Systematic palaeontology and biostratigraphy of two Early Cretaceous condensed sections from the Barents Sea. Polar Research 8, 165–94.CrossRefGoogle Scholar
Århus, N, Verdenius, J and Birkelund, T (1986) Biostratigraphy of a Lower Cretaceous section from Sklinnabanken, Norway, with some comments on the Andøya exposure. Norsk Geologisk Tidsskrift 66, 1743.Google Scholar
Bailey, D (2019) Early Cretaceous Zonation. Cumbria, UK: BioStrat Ltd. Available at: http://www.biostrat.org.uk/EK%20Zones%202011postcon.pdf (Accessed: 15 May 2019).Google Scholar
Bint, AN (1986) Fossil Ceratiaceae: a restudy and new taxa from the mid-Cretaceous of the Western Interior, U.S.A. Palynology 10, 135–80.CrossRefGoogle Scholar
Birkenmajer, K, Pugaczewska, H and Wierzbowski, A (1979) The Janusfjellet Formation (Jurassic–Lower Cretaceous) at Myklegardfjellet, East Spitsbergen. Palaeontologia Polonica 43, 107–40.Google Scholar
Bjærke, T (1978) Mesozoic palynology of Svalbard III. Dinoflagellates from the Rurikfjellet Member, Janusfjellet Formation (Lower Cretaceous) of Spitsbergen. Palinologia, numero extraordin 1, 6993.Google Scholar
Bjærke, T and Thusu, B (1976 ) Cretaceous palynomorphs from Spitsbergenbanken NW Barents Shelf. Norsk Polarinstitut Årbok 1974, 258–62.Google Scholar
Bottini, C and Erba, E (2018) Mid-Cretaceous paleoenvironmental changes in the western Tethys. Climate of the Past 14, 1147–63. doi: 10.5194/cp-14-1147-2018.CrossRefGoogle Scholar
Bottini, C, Erba, E, Tiraboschi, D, Jenkyns, HC, Schouten, S and Sinninghe Damsté, JS (2015) Climate variability and ocean fertility during the Aptian Stage. Climate of the Past 11, 383402. doi: 10.5194/cp-11-383-2015.CrossRefGoogle Scholar
Braathen, A, Bælum, K, Christiansen, HH, Dahl, T, Eiken, O, Elvebakk, H, Hansen, F, Hanssen, TH, Jochmann, M, Johansen, TA, Johnsen, H, Larsen, L, Lie, T, Mertes, J, Mørk, A, Mørk, MB, Nemec, W, Olaussen, S, Oye, V, Rød, K, Titlestad, GO, Tveranger, J and Vagle, K (2012) The Longyearbyen CO2 lab of Svalbard, Norway – initial assessment of the geological conditions for CO2 sequestration. Norsk Geologisk Tidsskrift 92, 353–76. doi: 10.1095/biolreprod.111.094433.Google Scholar
Brideaux, WW (1977) Taxonomy of Upper Jurassic–Lower Cretaceous microplankton from the Richardson Mountains, District of Mackenzie, Canada. Geological Survey of Canada Bulletin 281, 189. doi: 10.4095/102868.Google Scholar
Cookson, IC and Eisenack, A (1960) Upper Mesozoic microplankton from Australia and New Guinea. Palaeontology 2, 243–61.Google Scholar
Corfu, F, Polteau, S, Planke, S, Faleide, JI, Svensen, H, Zayoncheck, A and Stolbov, N (2013) U–Pb geochronology of Cretaceous magmatism on Svalbard and Franz Josef Land, Barents Sea large igneous province. Geological Magazine 150, 1127–35. doi: 10.1017/S0016756813000162.CrossRefGoogle Scholar
Costa, L (1981) Palynostratigraphy, Upper Cretaceous to Lower Cretaceous in the wells 2/7-1 and 2/7-3. In The Eldfisk Area (ed. Ofstad, K), pp. 134. Stavanger: Norwegian Petroleum Directorate Paper no. 30.Google Scholar
Costa, L and Davey, RJ (1992) Dinoflagellate cysts of the Cretaceous System. In A Stratigraphic Index of Dinoflagellate Cysts (ed. Powell, A), pp. 99153. British Micropalaeontological Society Publication Series. London: Chapman and Hall.CrossRefGoogle Scholar
Davey, RJ (1979a) The stratigraphic distribution of dinocysts in the Portlandian (latest Jurassic) to Barremian (early Cretaceous) of northwest Europe. American Association of Stratigraphic Palynologists Contributions Series 5B, 4981.Google Scholar
Davey, RJ (1979b) Two new Early Cretaceous dinocyst species from the northern North Sea. Palaeontology 22, 427–37.Google Scholar
Davey, RJ (1982) Dinocyst stratigraphy of the latest Jurassic to Early Cretaceous of the Haldager No. 1 borehole, Denmark. Danmarks Geologiske Undersøgelse, Series B, 6, 157.Google Scholar
Davey, RJ (1988) Palynological zonation of the Lower Cretaceous, Upper and uppermost Middle Jurassic in the northwestern Papuan Basin of Papua New Guinea. Geological Survey of Papua New Guinea, Memoir 13, 177.Google Scholar
Davey, RJ and Williams, GL (1966) V. The genus Hystrichosphaeridium and its allies. In Studies on Mesozoic and Cainozoic Dinoflagellate Cysts (eds Davey, RJ, Downie, C, Sarjeant, WAS and Williams, GL), pp. 53106. London: British Museum (Natural History) Geology, Bulletin, Supplement 3.Google Scholar
Davies, EH (1983) The dinoflagellate Oppel-zonation of the Jurassic–Lower Cretaceous Sequence in the Sverdrup Basin, Arctic Canada. Geological Survey of Canada Bulletin 359, 159.Google Scholar
De Lurio, JL and Frakes, LA (1999) Glendonites as a paleoenvironmental tool: implications for early Cretaceous high latitude climates in Australia. Geochimica et Cosmochimica Acta 63, 1039–48. doi: 10.1016/S0016-7037(99)00019-8.CrossRefGoogle Scholar
Dietmar Müller, R and Spielhagen, RF (1990) Evolution of the Central Tertiary Basin of Spitsbergen: towards a synthesis of sediment and plate tectonic history. Palaeogeography, Palaeoclimatology, Palaeoecology 80, 153–72. doi: 10.1016/0031-0182(90)90127-S.CrossRefGoogle Scholar
Ditchfield, PW (1997) High northern palaeolatitude Jurassic–Cretaceous palaeotemperature variation: new data from Kong Karls Land, Svalbard. Palaeogeography, Palaeoclimatology, Palaeoecology 130, 163–75. doi: 10.1016/S0031-0182(96)00054-5.CrossRefGoogle Scholar
Dörhöfer, G and Davies, EH (1980) Evolution of Archeopyle and Tabulation in Rhaetogonyaulacinean Dinoflagellate Cysts. Life Sciences Miscellaneous Publication. Toronto, Canada: Royal Ontario Museum, 91 pp.Google Scholar
Dörr, N, Lisker, F, Clift, PD, Carter, A, Gee, DG, Tebenkov, AM and Spiegel, C (2012) Late Mesozoic–Cenozoic exhumation history of northern Svalbard and its regional significance: constraints from apatite fission track analysis. Tectonophysics 514–517, 8192. doi: 10.1016/j.tecto.2011.10.007.CrossRefGoogle Scholar
Duxbury, S (1977) A palynostratigraphy of the Berriasian to Barremian of the Speeton Clay of Speeton, England. Palaeontographica Abteilung B 160, 1767.Google Scholar
Duxbury, S (1980) Barremian phytoplankton from Speeton, east Yorkshire. Palaeontographica Abteilung B 173, 107–46.Google Scholar
Duxbury, S (2001) A palynological zonation scheme for the Lower Cretaceous – United Kingdom sector, central North Sea. Neues Jahrbuch fuer Geologie und Palaeontologie Abhandlungen 219, 95137.CrossRefGoogle Scholar
Dypvik, H, Eikeland, TA, Backer-Owe, K, Andresen, A, Johanen, H, Nagy, EJ, Haremo, P and Bjærke, T (1991) The Janusfjellet Subgroup (Bathonian to Hauterivian) on central Spitsbergen: a revised lithostratigraphy. Polar Research 9, 2144.CrossRefGoogle Scholar
Dypvik, H, Nagy, J and Krinsley, DH (1992) Origin of the Myklegardfjellet Bed, a basal Cretaceous marker on Spitsbergen. Polar Research 11, 2131.CrossRefGoogle Scholar
Erbacher, J, Thurow, J and Littke, R (1996) Evolution patterns of Radiolaria and organic matter variations: a new approach to identify sea-level changes in mid-Cretaceous pelagic environments. Geology 24, 499502. doi: 10.1130/0091-7613(1996)024<0499:EPORAO>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Galloway, JM, Tullius, DN, Evenchick, CA, Swindles, GT, Hadlari, T and Embry, A (2015) Early Cretaceous vegetation and climate change at high latitude: palynological evidence from Isachsen Formation, Arctic Canada. Cretaceous Research 56, 399420. doi: 10.1016/j.cretres.2015.04.002.CrossRefGoogle Scholar
Gjelberg, J and Steel, RJ (1995) Helvetiafjellet formation (Barremian–Aptian), Spitsbergen: characteristics of a transgressive succession. In Sequence Stratigraphy on the Northwest European Margin (eds Steel, RJ, Felt, VLJohannessen, EP and Mathieu, C), pp. 571–93. Norwegian Petroleum Society Special Publications 5. doi: 10.1016/S0928-8937(06)80087-1.Google Scholar
Gocht, H (1957) Mikroplankton aus dem nordwestdeutschen Neokom (Teil I). Paläontologische Zeitschrift 31, 163–85.CrossRefGoogle Scholar
Gradstein, FM, Kaminski, MA and Agterberg, FP (1999) Biostratigraphy and paleoceanography of the Cretaceous seaway between Norway and Greenland. Earth-Science Reviews 46, 2798. doi: 10.1016/S0012-8252(99)00018-5.CrossRefGoogle Scholar
Grøsfjeld, K (1991) Palynological age constraints on the base of the Helvetiafjellet Formation (Barremian) on Spitsbergen. Polar Research 11, 1119.CrossRefGoogle Scholar
Grundvåg, S-A, Jelby, ME, Śliwińska, KK, Nøhr-Hansen, H, Aadland, T, Sandvik, SE, Tennvassås, I, Engen, T and Olaussen, S (2019) Sedimentology and palynology of the Lower Cretaceous succession of central Spitsbergen: integration of subsurface and outcrop data. Norwegian Journal of Geology 99, 132. doi: 10.17850/njg006.Google Scholar
Grundvåg, S-A, Marin, D, Kairanov, B, Śliwińska, KK, Nøhr-Hansen, H, Jelby, ME, Escalona, A and Olaussen, S (2017) The Lower Cretaceous succession of the northwestern Barents Shelf: onshore and offshore correlations. Marine and Petroleum Geology 86, 834–57. doi: 10.1016/j.marpetgeo.2017.06.036.CrossRefGoogle Scholar
Grundvåg, S-A and Olaussen, S (2017) Sedimentology of the Lower Cretaceous at Kikutodden and Keilhaufjellet, southern Spitsbergen: implications for an onshore-offshore link. Polar Research 36, 1302124. doi: 10.1080/17518369.2017.1302124.CrossRefGoogle Scholar
Hammer, Ø, Alsen, P, Grundvåg, S-A, Jelby, ME, Nøhr-Hansen, H, Olaussen, S, Senger, K, Śliwińska, KK and Smelror, M (2018) Comment on “Redox conditions, productivity, and volcanic input during deposition of uppermost Jurassic and Lower Cretaceous organic-rich siltstones in Spitsbergen, Norway” by Rakocinski et al. (2018). Cretaceous Research 96, 241–3. doi: 10.1016/j.cretres.2018.02.014.CrossRefGoogle Scholar
Harland, WB (1997) The Geology of Svalbard. Geological Society of London, Memoir no. 17. London: The Geological Society, 521 pp.Google Scholar
Heilmann-Clausen, C (1987) Lower Cretaceous dinoflagellate biostratigraphy in the Danish Central Trough. Danmarks Geologiske Undersøgelse, Series A, 17, 189.Google Scholar
Helby, R (1987) Muderongia and related dinoflagellates of the latest Jurassic to Early Cretaceous of Australasia. In Studies in Australian Mesozoic Palynology (ed. Jell, PA), pp. 297336. Sydney: Association of Australian Palaeontologists.Google Scholar
Henriksen, E, Ryseth, AE, Larssen, GB, Heide, T, Rønning, K, Sollid, K and Stoupakova, AV (2011) Chapter 10 Tectonostratigraphy of the greater Barents Sea: implications for petroleum systems. In Arctic Petroleum Geology (eds Spencer, AM, Embry, AFE, Gautier, DL, Stoupakova, AV and Sørensen, K), pp. 163–95. Geological Society of London, Memoirs no. 35. doi: 10.1144/M35.10.Google Scholar
Herrle, JO, Schröder-Adams, CJ, Davis, W, Pugh, AT, Galloway, JM and Fath, J (2015) Mid-Cretaceous High Arctic stratigraphy, climate, and Oceanic Anoxic Events. Geology 43, 403–6. doi: 10.1130/G36439.1.CrossRefGoogle Scholar
Hochuli, PA, Menegatti, AP, Weissert, H, Riva, A, Erba, E and Premoli Silva, I (1999) Episodes of high productivity and cooling in the early Aptian Alpine Tethys. Geology 27, 657–60. doi: 10.1130/0091-7613(1999)027<0657:EOHPAC>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Holden, JC (1970) Reconstruction of Pangaea: breakup and dispersion of continents, Permian to Present. Journal of Geographical Research 75, 4939–56. doi: 10.1029/JB075i026p04939.Google Scholar
Huber, BT, MacLeod, G, Watkins, DK and Coffin, MF (2018) The rise and fall of the Cretaceous Hot Greenhouse climate. Global and Planetary Change 167, 123. doi: 10.1016/j.gloplacha.2018.04.004.CrossRefGoogle Scholar
Hurum, JH, Druckenmiller, PS, Hammer, Ø, Nakrem, HA and Olaussen, S (2016a) The theropod that wasn’t: an ornithopod tracksite from the Helvetiafjellet Formation (Lower Cretaceous) of Boltodden, Svalbard. In Mesozoic Biotas of Scandinavia and its Arctic Territories (eds Kear, BP, Lindren, J, Hurum, JH, Milàn, J and Vajda, V), pp. 189206. Geological Society of London, Special Publication no. 434. doi: 10.1144/sp434.10.Google Scholar
Hurum, JH, Roberts, AJ, Dyke, GJ, Grundvåg, S-A, Nakrem, HA, Midtkandal, I, Śliwińska, KK and Olaussen, S (2016b) Bird or maniraptoran dinosaur? A femur from the Albian strata of Spitsbergen. Palaeontologia Polonica 67, 137–47. doi: 10.4202/pp.2016.67_137.Google Scholar
Ioannides, NS, Stavrinos, GN and Downie, C (1977) Kimmeridgian microplankton from Clavell’s Hard, Dorset, England. Micropaleontology 22, 443–78.CrossRefGoogle Scholar
Jain, KP and Millepied, P (1973) Cretaceous microplankton from Senegal Basin, NW Africa. 1. Some new genera, species and combinations of dinoflagellates. The Palaeobotanist 20, 2232.Google Scholar
Jelby, ME, Grundvåg, S-A, Helland-Hansen, W, Olaussen, S and Stemmerik, L (2020) Tempestite facies variability and storm-depositional processes across a wide ramp: Towards a polygenetic model for hummocky cross-stratification. Sedimentology 67, 742–81. doi: 10.1111/sed.12671.CrossRefGoogle Scholar
Jenkyns, HC (2010) Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems 11, 130. doi: 10.1029/2009GC002788.CrossRefGoogle Scholar
Jenkyns, HC, Schouten-Huibers, L, Schouten, S and Sinninghe Damsté, JS (2012) Warm Middle Jurassic–Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean. Climate of the Past 8, 215–26. doi: 10.5194/cp-8-215-2012.CrossRefGoogle Scholar
Johnston, FKB, Turchyn, AV and Edmonds, M (2011) Decarbonation efficiency in subduction zones: implications for warm Cretaceous climates. Earth and Planetary Science Letters 303, 143–52. doi: 10.1016/j.epsl.2010.12.049.CrossRefGoogle Scholar
Kairanov, B, Escalona, A, Mordasova, A, Śliwińska, K and Suslova, A (2018) Lower Cretaceous tectonostratigraphic evolution of the north central Barents Sea. Journal of Geodynamics 119, 183–98. doi: 10.1016/j.jog.2018.02.009.CrossRefGoogle Scholar
Koevoets, MJ, Hammer, Ø, Olaussen, S, Senger, K and Smelror, M (2018) Integrating subsurface and outcrop data of the middle Jurassic to lower Cretaceous Agardhfjellet Formation in central Spitsbergen. Norsk Geologisk Tidsskrift 98, 134. doi: 10.17850/njg98-4-01.Google Scholar
Koopmann, H, Schreckenberger, B, Franke, D, Becker, K and Schnabel, M (2014) The late rifting phase and continental break-up of the southern South Atlantic: the mode and timing of volcanic rifting and formation of earliest oceanic crust. In Magmatic Rifting and Active Volcanism (eds Wright, TJ, Ayele, A, Ferguson, DJ, Kidane, T and Vye-Brown, C), pp. 315–40. Geological Society of London, Special Publication no. 420. doi: 10.1144/sp420.2.Google Scholar
Lebedeva, NK and Nikitenko, BL (1999) Dinoflagellate cysts and microforaminifera of the Lower Cretaceous Yatria River section, subarctic Ural, NW Siberia (Russia). Biostratigraphy, palaeoenvironmental and palaeogeographic discussion. Grana 38, 134–43. doi: 10.1080/00173139908559222.Google Scholar
Leckie, RM, Bralower, TJ and Cashman, R (2002) Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 17, 13 doi: 10.1029/2001PA000623.CrossRefGoogle Scholar
Lehmann, J (2015) Ammonoid biostratigraphy of the Cretaceous—an overview. In Ammonoid Paleobiology: From Macroevolution to Paleogeography (eds Klug, C, Korn, D, De Baets, K, Kruta, I and Mapes, RH), pp. 403–29. Dordrecht: Springer. doi: 10.1007/978-94-017-9633-0.CrossRefGoogle Scholar
Littler, K, Robinson, SA, Bown, PR, Nederbragt, AJ and Pancost, RD (2011) High sea-surface temperatures during the Early Cretaceous Epoch. Nature Geoscience 4, 169–72. doi: 10.1038/ngeo1081.CrossRefGoogle Scholar
Løfaldi, M and Thusu, B (1976) Microfossils from the Janusfjellet Subgroup (Jurassic–Lower Cretaceous) at Agardhfjellet and Keilhaufjellet, Spitsbergen. A preliminary report. Norsk Polarinstitut Årbok 1975, 6977.Google Scholar
Marín, D, Escalona, A, Grundvåg, SA, Nøhr-Hansen, H and Kairanov, B (2018a) Effects of adjacent fault systems on drainage patterns and evolution of uplifted rift shoulders: the Lower Cretaceous in the Loppa High, southwestern Barents Sea. Marine and Petroleum Geology 94, 212–29. doi: 10.1016/j.marpetgeo.2018.04.009.CrossRefGoogle Scholar
Marín, D, Escalona, A, Grundvåg, SA, Olaussen, S, Sandvik, S and Śliwińska, KK (2018b) Unravelling key controls on the rift climax to post-rift fill of marine rift basins: insights from 3D seismic analysis of the Lower Cretaceous of the Hammerfest Basin, SW Barents Sea. Basin Research 30, 587612. doi: 10.1111/bre.12266.CrossRefGoogle Scholar
Marín, D, Escalona, A, Śliwińska, KK, Nøhr-Hansen, H and Mordasova, A (2017) Sequence stratigraphy and lateral variability of Lower Cretaceous clinoforms in the southwestern Barents Sea. American Association of Petroleum Geologists Bulletin 101, 1487–517. doi: 10.1306/10241616010.CrossRefGoogle Scholar
McIntyre, DJ and Brideaux, WW (1980) Valanginian miospore and microplankton assemblages from the northern Richardson Mountains, District of Mackenzie. Geological Survey of Canada, Bulletin 320, 157.Google Scholar
Midtkandal, I and Nystuen, JP (2009) Depositional architecture of a low-gradient ramp shelf in an epicontinental sea: the lower Cretaceous of Svalbard. Basin Research 21, 655–75. doi: 10.1111/j.1365-2117.2009.00399.x.CrossRefGoogle Scholar
Midtkandal, I, Nystuen, JP and Nagy, J (2007) Paralic sedimentation on an epicontinental ramp shelf during a full cycle of relative sea-level fluctuation; the Helvetiafjellet Formation in Nordenskiöld land, Spitsbergen. Norsk Geologisk Tidsskrift 87, 343–59.Google Scholar
Midtkandal, I, Nystuen, JP, Nagy, J and Mørk, A (2008) Lower Cretaceous lithostratigraphy across a regional subaerial unconformity in Spitsbergen: the Rurikfjellet and Helvetiafjellet Formations. Norsk Geologisk Tidsskrift 88, 287304.Google Scholar
Midtkandal, I, Svensen, HH, Planke, S, Corfu, F, Polteau, S, Torsvik, TH, Faleide, JI, Grundvåg, SA, Selnes, H, Kürschner, W and Olaussen, S (2016) The Aptian (Early Cretaceous) oceanic anoxic event (OAE1a) in Svalbard, Barents Sea, and the absolute age of the Barremian-Aptian boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 463, 126–35. doi: 10.1016/j.palaeo.2016.09.023.CrossRefGoogle Scholar
Mutterlose, J, Pauly, S and Steuber, T (2009) Temperature controlled deposition of early Cretaceous (Barremian-early Aptian) black shales in an epicontinental sea. Palaeogeography, Palaeoclimatology, Palaeoecology 273, 330–45 doi: 10.1016/j.palaeo.2008.04.026.CrossRefGoogle Scholar
Nikitenko, BL, Pestchevitskaya, EB, Lebedeva, NK and Ilyina, VI (2008) Micropalaeontological and palynological analyses across the Jurassic-Cretaceous boundary on Nordvik Peninsula, Northeast Siberia. Newsletters on Stratigraphy 42, 181222. doi: 10.1127/0078-0421/2008/0042-0181.CrossRefGoogle Scholar
Nøhr-Hansen, H (1993) Dinoflagellate Cyst Stratigraphy of the Barremian to Albian, Lower Cretaceous, North-East Greenland. Danmarks: Grønlands Geologiske Undersøgelse, 166 pp.Google Scholar
Nøhr-Hansen, H and McIntyre, DJ (1998) Upper Barremian to upper Albian (Lower Cretaceous) dinoflagellate cyst assemblages, Canadian Arctic archipelago. Palynology 22, 143–66. doi: 10.1080/01916122.1998.9989506.CrossRefGoogle Scholar
Nøhr-Hansen, H, Piasecki, S and Alsen, P (2019) A Cretaceous dinoflagellate cyst zonation for NE Greenland. Geological Magazine, published online 29 October 2019. doi: 10.1017/S0016756819001043.CrossRefGoogle Scholar
Norris, G (1978) Phylogeny and a revised supra-generic classification for Triassic–Quaternary organic-walled dinoflagellate cysts (Pyrrhophyta). Part II. Families and sub-orders of fossil dinoflagellates. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 156, 130.Google Scholar
O’Brien, CL, Robinson, SA, Pancost, RD, Sinninghe Damsté, JS, Schouten, S, Lunt, DJ, Alsenz, H, Bornemann, A, Bottini, C, Brassell, SC, Farnsworth, A, Forster, A, Huber, BT, Inglis, GN, Jenkyns, HC, Linnert, C, Littler, K, Markwick, P, McAnena, A, Mutterlose, J, Naafs, BDA, Püttmann, W, Sluijs, A, van Helmond, NAGM, Vellekoop, J, Wagner, T and Wrobel, NE (2017) Cretaceous sea-surface temperature evolution: constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth-Science Reviews 172, 224–47. doi: 10.1016/j.earscirev.2017.07.012.CrossRefGoogle Scholar
Ogg, JG, Hinnov, LA and Huang, C (2012) Cretaceous. In The Geologic Time Scale 2012 (eds Gradstein, FM, Ogg, JG, Schmitz, M and Ogg, G), pp. 793853. Amsterdam: Elsevier. doi: 10.1016/B978-0-444-59425-9.00027-5.CrossRefGoogle Scholar
Ogg, JG, Ogg, GM and Gradstein, FM (2016) 13 - Cretaceous. In A Concise Geologic Time Scale 2016 (eds Ogg, JG, Ogg, GM and Gradstein, FM), pp. 167–86. Amsterdam: Elsevier, doi: 10.1016/B978-0-444-59467-9.00013-3.CrossRefGoogle Scholar
Parker, JR (1967) The Jurassic and Cretaceous Sequence in Spitsbergen. Geological Magazine 104, 487505. doi: 10.1017/S0016756800049220.CrossRefGoogle Scholar
Pedersen, GK and Nøhr-Hansen, H (2014) Sedimentary successions and palynoevent stratigraphy from the non-marine Lower Cretaceous to the marine Upper Cretaceous of the Nuussuaq Basin, West Greenland. Bulletin of Canadian Petroleum Geology 64, 261–88. doi: 10.2113/gscpgbull.62.4.261.CrossRefGoogle Scholar
Pestchevitskaya, EB (2007) Dinocyst biostratigraphy of the Lower Cretaceous in North Siberia. Stratigraphy and Geological Correlation 15, 577609. doi: 10.1134/s0869593807060020.CrossRefGoogle Scholar
Pestchevitskaya, E, Lebedeva, N and Ryabokon, A (2011) Uppermost Jurassic and lowermost Cretaceous dinocyst successions of Siberia, the Subarctic Urals and Russian platform and their interregional correlation. Geologica Carpathica 62, 189202. doi: 10.2478/v10096-011-0016-9.CrossRefGoogle Scholar
Piasecki, S (1979) Hauterivian dinoflagellate cysts from Milne Land, East Greenland. Bulletin of the Geological Society of Denmark 28, 31–7.Google Scholar
Piasecki, S, Nøhr-Hansen, H and Dalhoff, F (2018) Revised stratigraphy of Kap Rigsdagen beds, Wandel Sea Basin, North Greenland. Newsletters on Stratigraphy 51, 411–25. doi: 10.1127/nos/2018/0444.Google Scholar
Pocock, SAJ (1976) A preliminary dinoflagellate zonation of the uppermost Jurassic and lower part of the Cretaceous, Canadian Arctic, and possible correlation in the Western Canada Basin. Journal of Geoscience and Man 7, 101–14. doi: 10.2307/3687262.CrossRefGoogle Scholar
Polteau, S, Hendriks, BWH, Planke, S, Ganerød, M, Corfu, F, Faleide, JI, Midtkandal, I, Svensen, HS and Myklebust, R (2016) The Early Cretaceous Barents Sea Sill Complex: distribution, 40Ar/39Ar geochronology, and implications for carbon gas formation. Palaeogeography, Palaeoclimatology, Palaeoecology 441, 8395. doi: 10.1016/J.PALAEO.2015.07.007.CrossRefGoogle Scholar
Price, GD and Passey, BH (2013) Dynamic polar climates in a greenhouse world: evidence from clumped isotope thermometry of Early Cretaceous belemnites. Geology 41, 923–6. doi: 10.1130/G34484.1.CrossRefGoogle Scholar
Prössl, KF (1990) Dinoflagellaten der Kreide – Unter-Hauterive bis Ober-Turon – im niedersächsischen Becken. Stratigraphie und Fazies in der Kernbohrung Konrad 101 sowie einiger anderer Bohrungen in Nordwestdeutschland. Palaeontographica Abteilung B 218, 93191.Google Scholar
Rakociński, M, Zatoń, M, Marynowski, L, Gedl, P and Lehmann, J (2018) Redox conditions, productivity, and volcanic input during deposition of uppermost Jurassic and Lower Cretaceous organic-rich siltstones in Spitsbergen, Norway. Cretaceous Research 89, 126–47. doi: 10.1016/j.cretres.2018.02.014.CrossRefGoogle Scholar
Riding, JB, Fedorova, VA and Ilyina, VI (1999) Jurassic and lowermost Cretaceous dinoflagellate cyst biostratigraphy of the Russian Platform and Northern Siberia, Russia. American Association of Stratigraphic Palynologists Contribution Series 36, 1184.Google Scholar
Riding, JB and Fensome, RA (2003) A review of Scriniodinium Klement 1957, Endoscrinium (Klement 1960) Vozzhennikova 1967 and related dinoflagellate cyst taxa. Palynology 26, 533.CrossRefGoogle Scholar
Rogers, JJW and Santosh, M (2004) Continents and supercontinents. Gondwana Research 7, 653 doi: 10.1016/S1342-937X(05)70827-3.CrossRefGoogle Scholar
Sarjeant, WAS (1966) Further dinoflagellate cysts from the Speeton Clay. In Studies on Mesozoic and Cainozoic Dinoflagellate Cysts (eds Davey, RJ, Downie, C, Sarjeant, WAS and Williams, GL), pp. 199214. London: British Museum (Natural History) Geology, Bulletin, Supplement 3.Google Scholar
Scotese, C (2014) Atlas of Early Cretaceous Paleogeographic Maps, PALEOMAP Atlas for ArcGIS, volume 2, The Cretaceous, Maps 23–31, Mollweide Projection. Evanston, IL: PALEOMAP Project. doi: 10.13140/2.1.4099.4560.Google Scholar
Senger, K, Tveranger, J, Ogata, K, Braathen, A and Planke, S (2014) Late Mesozoic magmatism in Svalbard: a review. Earth-Science Reviews 139, 123–44. doi: 10.1016/j.earscirev.2014.09.002.CrossRefGoogle Scholar
Śliwińska, KK (2019) Early Oligocene dinocysts as a tool for palaeoenvironment reconstruction and stratigraphical framework – a case study from a North Sea well. Journal of Micropalaeontology 38, 143–76. doi: 10.5194/jm-38-143-2019.CrossRefGoogle Scholar
Smelror, M (1986) Jurassic and Lower Cretaceous palynomorph assemblages from Cape Flora, Franz Josef Land, Arctic USSR. Norsk Geologisk Tidsskrift 66, 107–19.Google Scholar
Smelror, M and Dypvik, H (2005) Marine microplankton biostratigraphy of the Volgian-Ryazanian boundary strata, western Barents Shelf. Norges geologiske undersøkelse Bulletin 443, 61–9.Google Scholar
Smelror, M and Dypvik, H (2006) The sweet aftermath: environmental changes and biotic restoration following the marine Mjølnir impact (Volgian–Ryazanian Boundary, Barents Shelf). In Biological Processes Associated with Impact Events (eds Cockell, C, Koeberl, C and Gilmour, I), pp. 143–78. Berlin: Springer-Verlag. doi: 10.1007/3-540-25736-5_7.CrossRefGoogle Scholar
Smelror, M and Larssen, GB (2016) Are there Upper Cretaceous sedimentary rocks preserved on Sørkapp land, Svalbard?. Norsk Geologisk Tidsskrift 96, 112. doi: 10.17850/njg96-2-05.Google Scholar
Smelror, M, Larssen, GB, Olaussen, S, Rømuld, A and Williams, R (2018) Late Triassic to Early Cretaceous palynostratigraphy of Kong Karls Land, Svalbard, Arctic Norway, with correlations to Franz Josef Land, Arctic Russia. Norwegian Journal of Geology 98, 131. doi: 10.17850/njg98-4-04.Google Scholar
Smelror, M, Mørk, A, Monteil, E, Rutledge, D and Leereveld, H (1998) The Klippfisk Formation – a new lithostratigraphic unit of Lower Cretaceous platform carbonates on the Western Barents Shelf. Polar Research 17, 181202. doi: 10.1111/j.1751-8369.1998.tb00271.x.Google Scholar
Smelror, M, Petrov, OV, Larssen, GB and Werner, SC (eds) (2009) Geological History of the Barents Sea. Trondheim: Norges geologiske undersøkelse/Geological Survey of Norway. Available at: https://issuu.com/ngu_/docs/atlas_-_geological_history_of_the_b/1?e=3609664/9026048.Google Scholar
Thusu, B (1978) Aptian to Toarcian dinoflagellate cysts from Arctic Norway. In Distribution of Biostratigraphically Diagnostic Dinoflagellate Cysts and Miospore from Northwest European Continental Shelf and Adjacent Areas (ed. Thusu, B), pp. 6195. London: Continental Shelf Institute Publication 100.Google Scholar
Torsvik, TH, Carlos, D, Mosar, J, Cocks, LRM and Malme, T (2002) Global reconstructions and North Atlantic paleogeography 440 Ma to Recent. In BATLAS – Mid Norway Plate Reconstruction Atlas with Global and Atlantic Perspectives (coord. Eide, EA), pp. 1839. Trondheim: NGU.Google Scholar
Trabucho Alexandre, J, Tuenter, E, Henstra, GA, van der Zwan, KJ, van de Wal, RSW, Dijkstra, HA and de Boer, PL (2010) The mid-Cretaceous North Atlantic nutrient trap: black shales and OAEs. Paleoceanography and Paleoclimatology 25, PA4201, doi: 10.1029/2010PA001925.Google Scholar
van Hinsbergen, DJJ, de Groot, LV, van Schaik, SJ, Spakman, W, Bijl, PK, Sluijs, A, Langereis, CG and Brinkhuis, H (2015) A paleolatitude calculator for paleoclimate studies. PLoS ONE 10, e0126946. doi: 10.1371/journal.pone.0126946.CrossRefGoogle ScholarPubMed
Vickers, ML, Price, GD, Jerrett, RM and Watkinson, M (2016) Stratigraphic and geochemical expression of Barremian–Aptian global climate change in Arctic Svalbard. Geosphere 12, 1594–605. doi: 10.1130/GES01344.1.CrossRefGoogle Scholar
Vozzhennikova, TF (1967) Iskopaemye Peridinei Yurskikh, Melovykh i Paleogenovykh Otlozheniy SSSR. Moscow: Izdatelstvo Nauka.Google Scholar
Wierzbowski, A, Hryniewicz, K, Hammer, Ø, Nakrem, HA and Little, CTS (2011) Ammonites from hydrocarbon seep carbonate bodies from the uppermost Jurassic – lowermost Cretaceous of Spitsbergen and their biostratigraphical importance. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen 262, 267–88. doi: 10.1127/0077-7749/2011/0198.CrossRefGoogle Scholar
Wiggins, VD (1972) Two new Lower Cretaceous dinoflagellate genera from southern Alaska (U.S.A.). Review of Palaeobotany and Palynology 14, 297308.CrossRefGoogle Scholar
White, HH (1842) On fossil Xanthidia. Microscopical Journal, London 11, 3540.Google Scholar
Williams, GL and Fensome, RA (2016) Fossil dinoflagellates: nomenclatural proposals in anticipation of a revised DINOFLAJ database. Palynology 40, 137–43.CrossRefGoogle Scholar
Williams, G, Fensome, R and MacRae, R (2017) The Lentins and Williams Index of fossil dinoflagellates 2017 edition. American Association of Stratigraphic Palynologists Contribution Series 48, 11097.Google Scholar
Zakharov, VA (1987) The bivalve Buchia and the Jurassic–Cretaceous boundary in the Boreal province. Cretaceous Research 8, 141–53. doi: 10.1016/0195-6671(87)90018-8.CrossRefGoogle Scholar
Supplementary material: File

Śliwińska et al. supplementary material

Śliwińska et al. supplementary material

Download Śliwińska et al. supplementary material(File)
File 5.2 MB