Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T04:21:27.527Z Has data issue: false hasContentIssue false

Dinoflagellate cyst zonation for the middle to upper Eocene in the Austral Basin, southwestern Atlantic Ocean: implications for regional and global correlation

Published online by Cambridge University Press:  27 July 2016

M. SOL GONZÁLEZ ESTEBENET*
Affiliation:
Instituto Geológico del Sur, Departamento de Geología, Universidad Nacional del Sur, San Juan 670, B8000ICN Bahía Blanca, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
G. RAQUEL GUERSTEIN
Affiliation:
Instituto Geológico del Sur, Departamento de Geología, Universidad Nacional del Sur, San Juan 670, B8000ICN Bahía Blanca, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
MARTÍN E. RODRÍGUEZ RAISING
Affiliation:
Yacimientos Petrolíferos Fiscales S.A., Oficinas centrales, Av. del Libertador 520, 9005 Comodoro Rivadavia, Chubut, Argentina
JUAN J. PONCE
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina Instituto de Investigaciones en Paleobiología y Geología, Universidad Nacional de Río Negro, Sede Alto Valle, Argentina
MARTA I. ALPERÍN
Affiliation:
Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 s/n e/ Bv. 120 y Diag. 113, 1900 La Plata, Argentina
*

Abstract

The well-exposed marine Eocene units from southwestern Patagonia, Argentina, contain useful information for reconstructing regional climate and oceanographic patterns in an area adjacent to the Drake Passage. The aim of this paper is to integrate dinoflagellate cyst data from three sections of the southwestern Austral Basin (Río Turbio Formation) to propose a zonation scheme, which can be applied to other southwestern Atlantic Ocean sites. Assemblages of organic walled dinoflagellate cysts have been analysed in different cropping-out sections and cores, showing the high potential of this fossil group as biostratigraphic markers. Comparison of dinoflagellate cyst events of the upper member of the Río Turbio Formation with calibrated biostratigraphic ranges in the Palaeogene South Pacific Ocean allowed us to date and correlate these sedimentary sections. The resulting zonation consists of four dinoflagellate cyst zones labelled RTF 1 to RTF 4, between the middle Lutetian and late Priabonian. As a final point, we applied dinoflagellate cyst species with importance as palaeoenvironmental markers to assess long-term climatic and oceanographic evolution for the area. This study shows that the endemic–Antarctic dinoflagellate cyst assemblage is dominant during the middle to late Eocene (RTF 1 to RTF 3), while a significant replacement of these taxa by cosmopolitan species characterizes the upper part of the upper member of the Río Turbio Formation (RTF 4). This turnover seems to be a consequence of changes in the ocean circulation patterns forced by deepening of the southern Atlantic gateways (the Drake Passage and the Tasman Gateway).

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archangelsky, S. 1968. Sobre el paleomicroplancton del Terciario inferior de Río Turbio, provincial de Santa Cruz. Ameghiniana 5, 406–16.Google Scholar
Archangelsky, S. 1969. Estudio del paleomicroplancton de la Formación Río Turbio (Eoceno), Provincia de Santa Cruz. Ameghiniana 6, 181218.Google Scholar
Archangelsky, S. & Fasola, A. 1971. Algunos elementos del paleomicroplancton del Terciario inferior de Patagonia Argentina y Chile. Revista del Museo de la Plata, sección Paleontología 36, 117.Google Scholar
Bijl, P. K., Bendle, J. A. P., Bohaty, S. M., Pross, J., Schouten, S., Tauxe, L., Stickley, C. E., McKay, R. M., Röhl, U., Olney, M., Sluijs, A., Escutia, C., Brinkhuis, H. & Expedition 318 Scientists. 2013a. Eocene cooling linked to early flow across the Tasmanian Gateway. Proceedings of the National Academy of Sciences 110, 9645–50.Google Scholar
Bijl, P. K., Houben, A. J., Schouten, S., Bohaty, S. M., Sluijs, A., Reichart, G., Damsté, J. S. & Brinkhuis, H. 2010. Transient Middle Eocene atmospheric CO2 and temperature variations. Science 330, 819–21.Google Scholar
Bijl, P. K., Pross, J., Warnaar, J., Stickley, C. E., Huber, M., Guerstein, R., Houben, A. J. P., Sluijs, A., Visscher, H. & Brinkhuis, H. 2011. Environmental forcings of Paleogene Southern Ocean dinoflagellate biogeography. Paleoceanography 26, PA1202.Google Scholar
Bijl, P. K., Schouten, S., Sluijs, A., Reichart, G. J., Zachos, J. C. & Brinkhuis, H. 2009. Early Palaeogene temperature evolution of the southwest Pacific Ocean. Nature 461, 776–9.Google Scholar
Bijl, P. K., Sluijs, A. & Brinkhuis, H. 2013b. A magneto- and chemostratigraphically calibrated dinoflagellate cyst zonation of the early Palaeogene South Pacific Ocean. Earth-Science Reviews 124, 131.Google Scholar
Bohaty, S. M. & Zachos, J. C. 2003. Significant Southern Ocean warming event in the late middle Eocene. Geology 31, 1017–20.CrossRefGoogle Scholar
Bohaty, S. M., Zachos, J. C., Florindo, F. & Delaney, M. L. 2009. Coupled greenhouse warming and deep-sea acidification in the middle Eocene. Paleoceanography 24, PA2207.Google Scholar
Brinkhuis, H. 1994. Late Eocene to Early Oligocene dinoflagellate cysts from the Priabonian type-area (Northeast Italy): biostratigraphy and paleoenvironmental interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology 107, 121–63.CrossRefGoogle Scholar
Brinkhuis, H., Bujak, J. P., Smit, J., Versteegh, G. J. M. & Visscher, H. 1998. Dinoflagellate-based sea surface temperature reconstructions across the Cretaceous–Tertiary boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 141, 6783.Google Scholar
Brinkhuis, H., Munsterman, D. M., Sengers, S., Sluijs, A., Wanaar, J. & Williams, G. L. 2003a. Late Eocene to Quaternary dinoflagellate cysts from ODP Site 1168, off western Tasmania. In Proceedings of the Ocean Drilling Program (eds Exon, N. F., Kennett, J. P. & Malone, M. J.), pp. 136. Scientific Results no. 189.Google Scholar
Brinkhuis, H., Sengers, S., Sluijs, A., Warnaar, J. & Williams, G. L., 2003b. Latest Cretaceous to earliest Oligocene, and Quaternary dinoflagellate cysts from ODP Site 1172, East Tasman Plateau. In Proceedings of the Ocean Drilling Program (eds Exon, N. F., Kennett, J. P. & Malone, M. J.), pp. 148. Scientific Results no. 189.Google Scholar
Calegari, R., Baldi, M. J. & Pioli, O. 1993. Sismoestratigrafía del Terciario de cuenca Austral. Aplicación en proyectos exploratorios. Boletín de Informaciones Petroleras 10, 223.Google Scholar
Casadío, S., Griffin, M., Marenssi, S., Parras, A. M., Rodriguez Raising, M. & Santillana, S. 2009. Paleontology and sedimentology of Middle Eocene rocks in Lago Argentino area, Santa Cruz Province, Argentina. Ameghiniana 46, 2747.Google Scholar
Combes, V. & Matano, R. P. 2014. A two-way nested simulation of the oceanic circulation in the Southwestern Atlantic. Journal of Geophysical Research 119, 731–56.Google Scholar
Cookson, I. C. & Cranwell, L. M. 1967. Lower Tertiary microplankton, spores and pollen grains from southernmost Chile. Micropaleontology 13, 204–16.Google Scholar
Crouch, E. M., Dickens, G. R., Brinkhuis, H., Aubry, M.-P., Hollis, C. J., Rogers, K. M. & Visscher, H. 2003. The Apectodinium acme and terrestrial discharge during the Paleocene–Eocene Thermal Maximum: new palynological, geochemical and calcareous nannoplankton observations at Tawanui, New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 387403.Google Scholar
Dale, B. 1996. Dinoflagellate cyst ecology: modelling and geological applications. In Palynology: Principles and Applications (eds Jansonius, J. & McGregor, D. C.), pp. 1249–76. Salt Lake City: The American Association of Stratigraphic Palynologists Foundation.Google Scholar
Eagles, G. & Jokat, W. 2014. Tectonic reconstructions for paleobathymetry in Drake Passage. Tectonophysics 611, 2850.Google Scholar
Fasola, A. 1969. Estudio palinológico de la Formación Loreto (Terciario Medio) Provincia de Magallanes, Chile. Ameghiniana 6, 349.Google Scholar
Fensome, R. A., MacRae, R. A. & Williams, G. L. 2008. DINOFLAJ2, Version 1. American Association of Stratigraphic Palynologists, Data Series no. 1.Google Scholar
Furque, G. & Caballé, M. 1993. Estudio geológico y geomorfológico de la cuenca superior del Río Turbio, provincia de Santa Cruz. Consejo Federal de inversiones. Serie Investigaciones Aplicadas, Colección Hidrología Subterránea, Buenos Aires 6, 839.Google Scholar
González Estebenet, M. S., Guerstein, G. R. & Alperin, M. I. 2014. Dinoflagellate cyst distribution during the Middle Eocene in the Drake Passage area: paleoceanographic implications. Ameghiniana 51, 500–9.CrossRefGoogle Scholar
González Estebenet, M. S., Guerstein, G. R. & Casadío, S. 2015. Estudio bioestratigráfico y paleoambiental de la Formation Río Turbio (Eoceno medio a tardío) en el sudoeste de Patagonia (Argentina) basado en quistes de dinoflagelados. Revista Brasilera de Paleontología 18, 429–42.CrossRefGoogle Scholar
González Estebenet, M. S., Guerstein, G. R. & Rodríguez Raising, M. E. 2014. Middle Eocene Dinoflagellate cysts from Santa Cruz Province, Argentina: biostratigraphy and paleoenvironment. Review of Paleobotany and Palynology 211, 5565.CrossRefGoogle Scholar
Guerstein, G. R. & Daners, G. 2010. Distribución de Enneadocysta (Dinoflagellata) en el Paleógeno del Atlántico Sudoccidental: implicancias paleoceanográficas. Ameghiniana 47, 461–78.Google Scholar
Guerstein, G. R., Guler, M. V., Brinkhuis, H. & Warnaar, J. 2010a. Mid Cenozoic palaeoclimatic and palaeoceanographic trends in the southwest Atlantic basins: a dinoflagellate view. In The Paleontology of Gran Barranca: Evolution and Environmental Change through the Middle Cenozoic of Patagonia (eds Madden, R. H., Carlini, A. A., Vucetich, M. G. & Kay, R. F.), pp. 398409. Cambridge: Cambridge University Press.Google Scholar
Guerstein, G. R., González Estebenet, M. S., Alperin, M. I., Casadío, S. A. & Archangelsky, S. 2014a. Correlation and paleoenvironments of middle Paleogene marine beds based on dinoflagellate cysts in southwestern Patagonia, Argentina. Journal of South American Earth Sciences 52, 166–78.CrossRefGoogle Scholar
Guerstein, G. R., González Estebenet, M. S., Daners, G., Premaor, E., Pedrão Ferreira, E. & Belgaburo, A. 2014b. Middle Eocene dinoflagellate cyst distribution in the southwestern Atlanctic Ocean: paleoclimatic and paleoceanographic implications. 4th International Palaeontological Congress. Mendoza, Argentina.Google Scholar
Guerstein, G. R., Guler, M. V., Williams, G. L., Fensome, R. A. & Chiesa, J. O. 2008. Mid Palaeogene dinoflagellate cysts from Tierra del Fuego, Argentina: biostratigraphy and palaeoenvironments. Journal of Micropalaeontology 27, 7594.Google Scholar
Guerstein, G. R., Rodriguez Raising, M. E., Casadío, S., Marenssi, S. & Cárdenas, O. 2010b. Palinología del Miembro Inferior de la Formación Río Turbio (Eoceno inferior a medio) en el cañón del río Guillermo, suroeste de Santa Cruz, Argentina. X Congreso Argentino de Paleontología y Bioestratigrafía. La Plata, Argentina. Resúmenes, 93.Google Scholar
Houben, A. J. P., Bijl, P. K., Guerstein, R. G., Sluijs, A. & Brinkhuis, H. 2011. Malvinia escutiana, a new biostratigraphically important Oligocene dinoflagellate cyst from the Southern Ocean. Review of Palaeobotany and Palynology 165, 34.Google Scholar
Houben, A. J., Bijl, P. K., Pross, J., Bohaty, S. M., Passchier, S., Stickley, C. E., Röhl, U., Sugisaki, S., Tauxe, L., Flierdt, T., Olney, M., Sangiorgi, F., Sluijs, A., Escutia, C., Brinkhuis, H. & Expedition 318 Scientists. 2013. Reorganization of Southern Ocean plankton ecosystem at the onset of Antarctic glaciation. Science 340, 341–4.Google Scholar
Huber, M., Brinkhuis, H., Stickley, C. E., Döös, K., Sluijs, A., Warnaar, J., Schellenberg, S. A. & Williams, G. L. 2004. Eocene circulation of the Southern Ocean: was Antarctica kept warm by subtropical waters? Paleoceanography 19, PA4026. doi: 10.1029/2004PA001014.Google Scholar
Lagabrielle, Y., Goddéris, Y., Donnadieu, Y., Malavieille, J. & Suarez, M. 2009. The tectonic history of Drake Passage and its possible impacts on global climate. Earth and Planetary Science Letters 279, 197211.Google Scholar
Leanza, A. F. 1972. Andes Patagónicos Australes. In Geología Regional Argentina (ed. Academia Nacional de Ciencias), pp. 689706. Córdoba, Argentina: Academia Nacional de Ciencias.Google Scholar
Lentin, J. K. & Williams, G. L. 1976. A Monograph of Fossil Peridinioid Dinoflagellate Cysts. Bedford Institute of Oceanography Report Series BI-R-75-16, 237 pp.Google Scholar
Livermore, R., Hillenbrand, C. D., Meredith, M. & Eagles, G. 2007. Drake Passage and Cenozoic climate: an open and shut case? Geochemistry Geophysics Geosystems 8, Q01005. doi: 10.1029/2005GC001224 Google Scholar
Malumián, N. 1999. La sedimentación y el volcanismo terciarios en la Patagonia Extraandina. In Anales Instituto de Geología y Recursos Minerales (ed. Caminos, R.), pp. 557612. Geología Argentina 29, SEGEMAR, Buenos Aires.Google Scholar
Malumián, N. 2002. El Terciario marino. Sus relaciones con el eustatismo. In Geología y Recursos Naturales de Santa Cruz (ed. Haller, M. J.), pp. 237–44. Relatorio XV Congreso Geológico Argentino, Asociación Geológica Argentina. Buenos Aires.Google Scholar
Malumián, N. & Caramés, A. 1997. Upper Campanian–Paleogene from the Río Turbio coal measures in Southern Argentina: micropaleontology and the Paleocene/Eocene boundary. Journal of South American Earth Science 10, 189201.Google Scholar
Malumián, N. & Náñez, C. 2011. Los foraminíferos de la provincia de Santa Cruz. Su significado geológico. In Geología y Recursos Naturales de Santa Cruz: Relatorio (ed. Haller, M. J.), pp. 481–94. XV Congreso Geológico Argentino I(23).Google Scholar
Malumian, N., Panza, J. L., Parisi, C., Nañez, C., Carames, A. & Torre, E. 2000. Hoja Geologica 5172-III – Yacimiento Rio Turbio, provincia Santa Cruz, 1:250.000. Boletín del Servicio Geológico Minero Argentino 247, 108.Google Scholar
Marret, F. & Zonneveld, K. A. 2003. Atlas of modern organic-walled dinoflagellate cyst distribution. Review of Palaeobotany and Palynology 125, 1200.Google Scholar
Matano, R. P. & Palma, E. D. 2008. On the upwelling of downwelling currents. Journal of Physical Oceanography 38, 2482–500.Google Scholar
Nullo, F. E., Panza, J. L. & Blasco, G. 1999. Jurásico y Cretácico de la cuenca Austral. In Geología Argentina: Anales Instituto de Geología y Recursos Minerales (ed. Caminos, R.), pp. 399416. SEGEMAR, Buenos Aires 29.Google Scholar
Olivero, E. B. & Malumián, N. 1999. Eocene stratigraphy of southeastern Tierra del Fuego island, Argentina. Bulletin–American Association of Petroleum Geologists 83, 295313.Google Scholar
Palma, E. D., Matano, R. P. & Piola, A. R. 2008. A numerical study of the Southwestern Atlantic Shelf circulation: stratified ocean response to local and offshore forcing. Jornal of Geophysical Research 113, C11010. doi: 10.1029/2007JC004720.Google Scholar
Pearson, N., Mángano, M. G., Buatois, L. A., Casadío, S. & Rodriguez Raising, M. 2012. Ichnology, sedimentology, and sequence stratigraphy of outer-estuarine and coastal-plain deposits: implications for the distinction between allogenic and autogenic expressions of the Glossifungites Ichnofacies. Palaeogeography, Palaeoclimatology, Palaeoecology 333, 192217.Google Scholar
Piola, A. R., Martinez Avellaneda, N., Guerrero, R. A., Jardon, F. P., Palma, E. D. & Romero, S. I. 2010. Malvinas – slope water intrusions on the northern Patagonia continental shelf. Ocean Sciences 6, 345–59.Google Scholar
Premaor, E., Souza, P. A., Ferreira, E. P. & Guerstein, G. R. 2013. Significado bioestratigráfico das associações de cistos de dinoflagelados cenozoicos (Paleoceno a Mioceno) da Bacia de Pelotas. XXIII Congresso Brasileiro de Paleontologia, Boletim de Resumos 47–8.Google Scholar
Pross, J. 2001. Paleo-oxygenation in Tertiary epeiric seas: evidence from dinoflagellate cysts. Palaeogeography, Palaeoclimatology, Palaeoecology 166, 369–81.CrossRefGoogle Scholar
Pross, J. & Brinkhuis, H. 2005. Organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene; a synopsis of concepts. Paläontologische Zeitschrift 79, 53–9.Google Scholar
Pross, J. & Schmiedl, G. 2002. Early Oligocene dinoflagellate cysts from the Upper Rhine Graben (SW Germany): paleoenvironmental and paleoclimatic implications. Marine Micropaleontology 45, 124.Google Scholar
Pujana, R. R., Martínez, L. C. & Brea, M. 2011. El registro de maderas fósiles de Leguminosae de Sudamérica. Revista del Museo Argentino de Ciencias Naturales 13, 183–94.Google Scholar
Ramos, V. A. 2005. Seismic ridge subduction and topography: foreland deformation in the Patagonian Andes. Tectonophysics 399, 7386.Google Scholar
Rodríguez Raising, M. E. 2010. Estratigrafía secuencial de los depósitos marinos y continentales del Eoceno – Oligoceno temprano de la cuenca Austral, sudoeste de la provincia de Santa Cruz. Ph.D. thesis, Universidad Nacional del Sur, Buenos Aires, Argentina. Published thesis.Google Scholar
Rodríguez Raising, M. E., Casadío, S., Pearson, N., Mangano, G., Buatois, L. & Griffin, M. 2014. Paleoenvironmental setting and description of an estuarine oyster reef in the Eocene of Patagonia, southern Argentina. Journal of South American Earth Sciences 56, 242–50.Google Scholar
Rodríguez Raising, M. E., Griffin, M., Marenssi, S. & Casadío, S. 2008. Sedimentología y paleontología de la sección inferior de la Formación Río Turbio (Eoceno medio) en el cañón del río Guillermo (suroeste de Santa Cruz). XVII Congreso Geológico Argentino. San Salvador de Jujuy, Jujuy. Actas, 939.Google Scholar
Röhl, U., Brinkhuis, H., Stickley, C. E., Fuller, M., Schellenberg, S. A., Wefer, G. & Williams, G. L. 2004. Sea level and astronomically induced environmental changes in middle and late Eocene sediments from the East Tasman Plateau. In Climate Evolution of the Southern Ocean and Australia's Northward Flight from Antarctica (eds Exon, N. F., Malone, M. & Kennett, J. P.), pp. 127–51. American Geophysical Union, Geophysical Monograph Series.Google Scholar
Scher, H. D. & Martin, E. E. 2006.Timing and climatic consequences of the opening of Drake Passage. Science 312, 428–30.Google Scholar
Sluijs, A., Brinkhuis, H., Stickley, C. E., Warnaar, J., Williams, G. L. & Fuller, M. 2003. Dinoflagellate cysts from the Eocene/Oligocene transition in the Southern Ocean; results from ODP Leg 189. In Proceedings of the Ocean Drilling Program (eds Exon, N. F., Kennett, J. P. & Malone, M. J.), pp. 142. Scientific Results 189.Google Scholar
Sluijs, A., Brinkhuis, H., Williams, G. L. & Fensome, R. A. 2009. Taxonomic revision of some Cretaceous–Cenozoic spiny organic-walled peridiniacean dinoflagellate cysts. Review of Palaeobotany and Palynology 154, 3453.Google Scholar
Sluijs, A., Pross, J. & Brinkhuis, H. 2005. From greenhouse to icehouse; organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene. Earth Science Reviews 68, 281315.Google Scholar
Stickley, C. E., Brinkhuis, H., McGonigal, K. L., Chaproniere, G. C. H., Fuller, M., Kelly, D. C., Nürnberg, D., Pfuhl, H. A., Schellenberg, S. A., Schoenfeld, J., Suzuki, N., Touchard, Y., Wei, W., Williams, G. L., Lara, J. & Stant, S. A. 2004a. Late Cretaceous–Quaternary biomagnetostratigraphy of ODP Sites 1168, 1170, 1171, and 1172, Tasmanian Gateway. In Proceedings of the Ocean Drilling Program (eds Exon, N. F., Kennett, J. P. & Malone, M. J.), pp. 157. Scientific Results 189.Google Scholar
Stickley, C. E., Brinkhuis, H., Schellenberg, S. A., Sluijs, A., Röhl, U., Fuller, M., Grauert, M., Huber, M., Warnaar, J. & Williams, G. L. 2004b. Timing and nature of the deepening of the Tasmanian Gateway. Paleoceanography 19, PA4027.Google Scholar
Vandenberghe, N., Speijer, R. P. & Hilgen, F. J. 2012. The Paleogene period. In The Geologic Time Scale 2012 (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. & Ogg, G.), pp. 855922. Amsterdam: Elsevier.Google Scholar
Warnaar, J. 2006. Climatological implications of Australian–Antarctic separation. Ph.D. thesis, Utrecht University, Utrecht, Netherlands. Published thesis.Google Scholar
Warnaar, J., Bijl, P. K., Huber, M., Sloan, L., Brinkhuis, H., Röhl, U., Sriver, R. & Visscher, H. 2009. Orbitally forced climate changes in the Tasman sector during the Middle Eocene. Palaeogeography, Palaeoclimatology, Palaeoecology 280, 361–70.Google Scholar
Williams, G. L., Brinkhuis, H., Pearce, M. A., Fensome, R. A. & Weegink, J. W. 2004. Southern Ocean and global dinoflagellate cyst events compared: index events for the Late Cretaceous-Neogene. In Proceedings of the Ocean Drilling Program (eds Exon, N. F., Kennett, J. P. & Malone, M. J.), pp. 198. Scientific Results 189.Google Scholar
Wrenn, J. H. & Beckman, S. W. 1982. Maceral, total organic carbon, and palynological analyses of Ross Ice Shelf Project site J9 cores. Science 216, 187–9.Google Scholar
Wrenn, J. H. & Hart, G. F. 1988. Paleogene dinoflagellate cyst biostratigraphy of Seymour Island, Antarctica. Geological Society of America Memoirs 169, 321447.Google Scholar
Zachos, J. C., Dickens, G. R. & Zeebe, R. E. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–83.Google Scholar
Zonneveld, K. A., Marret, F., Versteegh, G. J., Bogus, K., Bonnet, S., Bouimetarhan, I., Crouch, E., de Vernal, A., Elshanawany, R., Edwards, L., Esper, O., Forke, S., Grøsfjeld, K., Henry, M., Holzwarth, U., Kielt, J-F., Kim, S-Y., Ladouceur, S., Ledu, D., Chen, L., Limoges, A., Londeix, L., Lu, S-H., Mahmoud, M. S., Marino, G., Matsouka, K., Matthiessen, J., Mildenhal, C., Mudie, P., Neil, H. L., Pospelova, V., Qi, Y., Radi, T., Richerol, T., Rochon, A., Sangiorgi, F., Solignac, S., Turon, J-L., Verleye, T., Wang, Y., Wang, Z. & Young, M. 2013. Atlas of modern dinoflagellate cyst distribution based on 2405 data points. Review of Palaeobotany and Palynology 191, 1197.CrossRefGoogle Scholar
Zonneveld, K. A., Susek, E. & Fischer, G. 2010. Seasonal variability of the organic-walled dinoflagellate cyst production in the coastal upwelling region off Cape Blanc (Mauritania): a five-year survey 1. Journal of Phycology 46, 202–15.Google Scholar