Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T17:43:50.092Z Has data issue: false hasContentIssue false

Early Jurassic adakitic rocks in the southern Lhasa sub-terrane, southern Tibet: petrogenesis and geodynamic implications

Published online by Cambridge University Press:  02 August 2017

XINFANG SHUI
Affiliation:
Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
ZHENYU HE*
Affiliation:
Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China GeoZentrum Nordbayern, Universität Erlangen, Schlossgarten 5a, 91054 Erlangen, Germany
REINER KLEMD
Affiliation:
GeoZentrum Nordbayern, Universität Erlangen, Schlossgarten 5a, 91054 Erlangen, Germany
ZEMING ZHANG
Affiliation:
Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
TIANYU LU
Affiliation:
Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
LILI YAN
Affiliation:
Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China GeoZentrum Nordbayern, Universität Erlangen, Schlossgarten 5a, 91054 Erlangen, Germany School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
*
Author for correspondence: ahhzy@163.com.

Abstract

Cretaceous–Miocene adakitic rocks in the southern Lhasa sub-terrane have been intensively investigated, while possible Early Jurassic adakitic rocks in this area have been largely neglected. Petrological and geochemical studies revealed adakitic affinities of an Early Jurassic quartz diorite intrusion with mafic enclaves and three tonalite bodies from the Jiacha area in the southern Lhasa sub-terrane. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb dating suggests crystallization ages of 199–179 Ma for these rocks. Both quartz diorites and tonalites have typical adakitic geochemical characteristics such as high Al2O3 (15.14–18.22 wt.%) and Sr (363–530 ppm) contents, low Y (4.46–15.9 ppm) and Yb (0.51–1.74 ppm) contents and high Sr/Y ratios of 27–106. The adakitic quartz diorites are further characterized by high MgO (2.63–3.46 wt.%), Mg# (48–54) and εHf(t) (6.6–13.4) values, which were probably produced by partial melting of a subducted oceanic slab with a mantle contribution. The adakitic tonalites have very low abundances of compatible elements and relatively low εHf(t) values (3.5–10.3), and are interpreted to have formed by partial melting of Neoproterozoic mafic lower crust. Upwelling asthenosphere, triggered by rollback of the subducting Bangong–Nujiang (Meso-Tethys) oceanic plate, provided the necessary heat for slab and lower crust melting, resulting in the geochemical diversity of the coexisting felsic intrusive rocks. Contrary to other models, this study further demonstrates that the Bangong–Nujiang oceanic plate was subducted southward beneath the Lhasa terrane during the Early Jurassic.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, T. 2002. Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology 192, 5979.CrossRefGoogle Scholar
Atherton, M. P. & Petford, N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362, 144–6.Google Scholar
Barbarin, B. 2005. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos 80, 155–77.Google Scholar
Barth, M. G., McDonough, W. F. & Rudnick, R. L. 2000. Tracking the budget of Nb and Ta in the continental crust. Chemical Geology 165, 197213.Google Scholar
Bouvier, A., Vervoort, J. D. & Patchett, P. J. 2008. The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters 273, 4857.CrossRefGoogle Scholar
Calmus, T., Pallares, C., Maury, R. C., Aguillón-Robles, A., Bellon, H., Benoit, M. & Michaud, F. 2011. Volcanic markers of the post-subduction evolution of Baja California and Sonora, Mexico: slab tearing versus lithospheric rupture of the Gulf of California. Pure and Applied Geophysics, 168, 1303–30.CrossRefGoogle Scholar
Castillo, P. R. 2006. An overview of adakite petrogenesis. Chinese Science Bulletin 51, 257–68.CrossRefGoogle Scholar
Castillo, P. R. 2012. Adakite petrogenesis. Lithos 134–135, 304–16.CrossRefGoogle Scholar
Castillo, P. R., Janney, P. E. & Solidum, R.U. 1999. Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology 134, 3351.CrossRefGoogle Scholar
Chappell, B. W., White, A. J. R. & Wyborn, D. 1987. The importance of residual source material (restite) in granite petrogenesis. Journal of Petrology 28, 1111–38.Google Scholar
Chauvel, C. & Blichert-Toft, J. 2001. A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth and Planetary Science Letters 190, 137–51.Google Scholar
Chen, S., Niu, Y. L., Sun, W. L., Zhang, Y., Li, J. Y., Guo, P. Y. & Sun, P. 2015. On the origin of mafic magmatic enclaves (MMEs) in syn-collisional granitoids: evidence from the Baojishan pluton in the North Qilian Orogen, China. Mineralogy and Petrology 109, 577–96.Google Scholar
Chen, J. L., Xu, J. F., Zhao, W. X., Dong, Y. H., Wang, B. D. & Kang, Z. Q. 2011. Geochemical variations in Miocene adakitic rocks from the western and eastern Lhasa terrane: implications for lower crustal flow beneath the Southern Tibetan Plateau. Lithos 125, 928–39.CrossRefGoogle Scholar
Chu, M. F., Chung, S. L., Song, B., Liu, D. Y., O'Reilly, S. Y., Pearson, N. J., Ji, J. Q. & Wen, D. J. 2006. Zircon U–Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology 34, 745–8.Google Scholar
Chung, S. L., Liu, D. Y., Ji, J. Q., Chu, M. F., Lee, H. Y., Wen, D. J., Lo, C. H., Lee, T. Y., Qian, Q. & Zhang, Q. 2003. Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology 31, 1021–4.Google Scholar
Coulon, C., Maluski, H., Bollinger, C. & Wang, S. 1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar–40Ar dating, petrological characteristics and geodynamical significance. Earth and Planetary Science Letters 79, 281302.CrossRefGoogle Scholar
Dai, J. G., Wang, C. S., Polat, A., Santosh, M., Li, Y. L. & Ge, Y. K. 2013. Rapid forearc spreading between 130 and 120Ma: evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet. Lithos 172–173, 116.Google Scholar
Defant, M. J. & Drummond, M. S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662–5.Google Scholar
Defant, M. J. & Drummond, M. S. 1993. Mount St. Helens: potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology 21, 547–50.Google Scholar
DePaolo, D. J. 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters 53, 189202.CrossRefGoogle Scholar
Dhuime, B., Hawkesworth, C. & Cawood, P. 2011.When continents formed. Science 331, 154–5.CrossRefGoogle ScholarPubMed
Dong, X. & Zhang, Z. M. 2013. Genesis and tectonic significance of the Early Jurassic magmatic rocks from the southern Lhasa terrane. Acta Petrologica Sinica 29, 1933–48 (in Chinese with English abstract).Google Scholar
Foley, F. V., Pearson, N. J., Rushmer, T., Turner, S. & Adam, J. 2013. Magmatic evolution and magma mixing of Quaternary adakites at Solander and little Solander Islands, New Zealand. Journal of Petrology 54, 703–44.CrossRefGoogle Scholar
Gao, J., Klemd, R., Long, L. L., Xiong, X. M. & Qian, Q. 2009. Adakitic signature formed by fractional crystallization: an interpretation for the Neo-Proterozoic meta-plagiogranites of the NE Jiangxi ophiolitic melange belt, South China. Lithos 110, 277–93.Google Scholar
Gao, Y. F., Hou, Z. Q., Kamber, B. S., Wei, R. H., Meng, X. J. & Zhao, R. S. 2007. Adakite-like porphyries from the southern Tibetan continental collision zones: evidence for slab melt metasomatism. Contributions to Mineralogy and Petrology 153, 105–20.CrossRefGoogle Scholar
Gao, Y. F., Yang, Z. S., Santosh, M., Hou, Z. Q., Wei, R. H. & Tian, S. H. 2010. Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet. Lithos 119, 651–63.CrossRefGoogle Scholar
Garrison, J. M. & Davidson, J. P. 2003. Dubious case for slab melting in the Northern volcanic zone of the Andes. Geology 31, 565–8.2.0.CO;2>CrossRefGoogle Scholar
Green, T. H. 1994. Experimental studies of trace-element partitioning applicable to igneous petrogenesis: Sedona 16 years later. Chemical Geology 117, 136.CrossRefGoogle Scholar
Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. E., van Achterbergh, E., O'Reilly, S. Y. & Shee, S. R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta 64,133–47.Google Scholar
Griffin, W.L., Wang, X., Jackson, S. E., Pearson, N. J., O'Reilly, S. Y., Xu, X. & Zhou, X. 2002. Zircon chemistry and magma mixing, SE China: in situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61, 237–69.Google Scholar
Gu, H. O., Xiao, Y. L., Santosh, M., Li, W. Y., Yang, X. Y., Pack, A. & Hou, Z. H. 2013. Spatial and temporal distribution of Mesozoic adakitic rocks along the Tan-Lu fault, Eastern China: constraints on the initiation of lithospheric thinning. Lithos 177, 352–65.Google Scholar
Guan, Q., Zhu, D. C., Zhao, Z. D., Dong, G. C., Zhang, L. L., Li, X. W., Liu, M., Mo, X. X., Liu, Y. S. & Yuan, H. L. 2012. Crustal thickening prior to 38 Ma in southern Tibet: evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith. Gondwana Research 21, 8899.Google Scholar
Guan, Q., Zhu, D. C., Zhao, Z. D., Zhang, L. L., Liu, M., Li, X. W., Yu, F., Liu, M. H. & Mo, X. X. 2010. Late Cretaceous adakites from the eastern segment of the Gangdese Belt, Southern Tibet: products of Neo-Tethyan mid-ocean ridge subduction. Acta Petrologica Sinica 26, 2165–79 (in Chinese with English abstract).Google Scholar
Guo, L. S., Liu, Y. L., Liu, S. W., Cawood, P. A., Wang, Z. H. & Liu, H. F. 2013. Petrogenesis of Early to Middle Jurassic granitoid rocks from the Gangdese belt, Southern Tibet: implications for early history of the Neo-Tethys. Lithos 179, 320–33.Google Scholar
Guo, Z. F., Wilson, M. & Liu, J. Q. 2007. Post-collisional adakites in south Tibet: products of partial melting of subduction-modified lower crust. Lithos 96, 205–24.Google Scholar
Gutscher, M. A., Maury, R. & Eissen, J. P., Bourdon, E. 2000. Can slab melting be caused by flat subduction? Geology 28, 535–8.Google Scholar
Hofmann, A. W. 1988. Chemical differentiation of the earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters 90, 297314.Google Scholar
Hoskin, P. W. O. & Schaltegger, U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry 53, 2762.Google Scholar
Hou, Z. Q., Gao, Y. F., Qu, X. M., Rui, Z. Y. & Mo, X. X. 2004. Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet. Earth and Planetary Science Letters 220, 139–55.Google Scholar
Hu, Z. C., Liu, Y. S., Gao, S., Liu, W. G., Zhang, W., Tong, X. R., Lin, L., Zong, K. Q., Li, M., Chen, H. H., Zhou, L. & Yang, L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry 27, 1391–9.Google Scholar
Huang, X. L., Xu, Y. G., Lan, J. B., Yang, Q. J. & Luo, Z. Y. 2009. Neoproterozoic adakitic rocks from Mopanshan in the western Yangtze craton: partial melts of a thickened lower crust. Lithos 112, 367–81.Google Scholar
Ji, W. Q., Wu, F. Y., Chung, S. L., Li, J. X. & Liu, C. Z. 2009 a. Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology 262, 229–45.Google Scholar
Ji, W. Q., Wu, F. Y., Liu, C. Z. & Chung, S. L. 2009 b. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet. Science in China Series D: Earth Sciences 52, 1240–61.CrossRefGoogle Scholar
Ji, W. Q., Wu, F. Y., Liu, C. Z. & Chung, S. L. 2012. Early Eocene crustal thickening in southern Tibet: new age and geochemical constraints from the Gangdese batholith. Journal of Asian Earth Sciences 53, 8295.Google Scholar
Jiang, Z. Q., Wang, Q., Li, Z. X., Wyman, D. A., Tang, G. J., Jia, X. H. & Yang, Y. H. 2012. Late Cretaceous (ca. 90 Ma) adakitic intrusive rocks in the Kelu area, Gangdese belt (southern Tibet): slab melting and implications for Cu–Au mineralization. Journal of Asian Earth Sciences 53, 6781.Google Scholar
Kang, Z. Q., Xu, J. F., Wilde, S. A., Feng, Z. H., Chen, J. L., Wang, B. D., Fu, W. C. & Pan, H. B. 2014. Geochronology and geochemistry of the Sangri Group volcanic rocks, southern Lhasa terrane: implications for the early subduction history of the Neo-Tethys and Gangdese magmatic arc. Lithos 200–201, 157–68.Google Scholar
Kapp, P., DeCelles, P. G., Gehrels, G. E., Heizler, M. & Ding, L. 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geological Society of America Bulletin 119, 917–33.Google Scholar
Kapp, P., Murphy, M. A., Yin, A., Harrison, T. M., Ding, L. & Guo, J. 2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics 22, 1029.Google Scholar
Kelemen, P. B., Hart, S. R., & Bernstein, S. 1998. Silica enrichment in the continental upper mantle via melt/rock reaction. Earth and Planetary Science Letters 164, 387406.Google Scholar
Kimura, H., Kasahara, K. & Takeda, T. 2009. Subduction process of the Philippine Sea Plate off the Kanto district, central Japan, as revealed by plate structure and repeating earthquakes. Tectonophysics 472, 1827.Google Scholar
Klemd, R. 2013. Metasomatism during high-pressure metamorphism: eclogites and blueschist facies rocks. In Metasomatism and the Chemical Transformation of Rocks (eds Harlov, D. E. & Austrheim, H.), pp. 351413. Berlin and Heidelberg: Springer.Google Scholar
Li, S. M., Zhu, D. C., Wang, Q., Zhao, Z., Zhang, L. L., Liu, S. A., Chang, Q. L., Lu, Y. H., Dai, J. G. & Zheng, Y. C. 2016. Slab-derived adakites and subslab asthenosphere-derived OIB-type rocks at 156±2 Ma from the north of Gerze, central Tibet: records of the Bangong–Nujiang oceanic ridge subduction during the Late Jurassic. Lithos 262, 456–69.CrossRefGoogle Scholar
Liu, Q. S., Jiang, W., Jian, P., Ye, P. S., Wu, Z. H. & Hu, D. G. 2006. Zircon SHRIMP U-Pb age and petrochemical and geochemical features of Mesozoic muscovite granite in Ningzhong, Tibet. Acta Petrologica Sinica 22, 643–52 (in Chinese with English abstract).Google Scholar
Liu, X. M., Gao, S., Diwu, C. R., Yuan, H. L. & Hu, Z. C. 2007. Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20 μm spot size. Chinese Science Bulletin 52, 1257–64.Google Scholar
Liu, Y. S., Gao, S., Hu, Z. C., Gao, C. G., Zong, K. Q. & Wang, D. B. 2010. Continental and oceanic crust recycling-induced Melt–Peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from Mantle Xenoliths. Journal of Petrology 51, 537–71.Google Scholar
Lu, T. Y., He, Z. Y., Zhang, Z. M., Shui, X. F. & Yan, L. L. 2016. Magma mixing of the Nyemo post-collisional granite from the Gangdese magmatic belt, Tibet: evidence of microstructures. Acta Petrologica Sinica 32, 3613–23 (in Chinese with English abstract).Google Scholar
Ludwig, K. R. 2003. User's Manual for Isoplot 3.00, a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication no. 4, 2532.Google Scholar
Ma, L., Wang, B. D., Jiang, Z. Q., Wang, Q., Li, Z. X., Wyman, D. A., Zhao, S. R., Yang, J. H., Gou, G. N. & Guo, H. F. 2014. Petrogenesis of the Early Eocene adakitic rocks in the Napuri area, southern Lhasa: partial melting of thickened lower crust during slab break-off and implications for crustal thickening in southern Tibet. Lithos 196–197, 321–38.Google Scholar
Ma, L., Wang, Q., Wyman, D. A., Li, Z. X., Jiang, Z. Q., Yang, J. H., Gou, G. N. & Guo, H. F. 2013. Late Cretaceous (100–89 Ma) magnesian charnockites with adakitic affinities in the Milin area, eastern Gangdese: partial melting of subducted oceanic crust and implications for crustal growth in southern Tibet. Lithos 175–176, 315–32.Google Scholar
Ma, S. W., Meng, Y. K., Xu, Z. Q. & Liu, X. J. 2017. The discovery of late Triassic mylonitic granite and geologic significance in the middle Gangdese batholiths, southern Tibet. Journal of Geodynamics 104, 4964.Google Scholar
Macpherson, C. G., Dreher, S. T. & Thirlwall, M. F. 2006. Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters 243, 581–93.Google Scholar
Maniar, P. D. & Piccoli, P. M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin 101, 635–43.Google Scholar
Meng, F. Y., Zhao, Z., Zhu, D. C., Mo, X., Guan, Q., Huang, Y., Dong, G. S, Zhou, S., DePaolo, D. J., Harrison, T., Zhang, Z. S, Liu, J. L, Liu, Y. S, Hu, Z. C. & Yuan, H. L. 2014. Late Cretaceous magmatism in Mamba area, central Lhasa subterrane: products of back-arc extension of Neo-Tethyan Ocean? Gondwana Research 26, 505–20.Google Scholar
Meng, Y. K., Dong, H. W., Cong, Y., Xu, Z. Q. & Cao, H. 2016a. The early-stage evolution of the Neo-Tethys ocean: evidence from granitoids in the middle Gangdese batholith, southern Tibet. Journal of Geodynamics 94–95, 3449.Google Scholar
Meng, Y. K., Xu, Z. Q., Santosh, M., Ma, X. X., Chen, X. J., Guo, G. L. & Liu, F., 2016b. Late Triassic crustal growth in southern Tibet: evidence from the Gangdese magmatic belt. Gondwana Research 37, 449–64.Google Scholar
Metcalfe, I. 1996. Gondwanaland dispersion, Asian accretion and evolution of Eastern Tethys. Australian Journal of Earth Sciences 43, 605–23.Google Scholar
Metcalfe, I. 2009. Late Palaeozoic and Mesozoic tectonic and palaeogeographic evolution of SE Asia. In Late Palaeozoic and Mesozoic Continental Ecosystems in SE Asia (eds Buffetaut, E., Cuny, G., Loeuff, J. Le and Suteethorn, V.), pp. 723. Geological Society of London, Special Publication no. 315.Google Scholar
Metcalfe, I. 2011. Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Research 19, 321.Google Scholar
Middlemost, E. A. K. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews 37, 215–24.Google Scholar
Mo, X. X. 2011. Magmatism and evolution of the Tibetan Plateau. Geological Journal of China Universities 17, 351–67 (in Chinese with English abstract).Google Scholar
Mo, X. X., Dong, G. C., Zhao, Z. D., Guo, T. Y., Wang, L. L. & Chen, T. 2005. Timing of magma mixing in the Gangdise magmatic belt during the India Asia collision: zircon SHRIMP U–Pb dating. Acta Geologica Sinica (English Edition) 79, 6676.Google Scholar
Mo, X. X., Dong, G. C., Zhao, Z. D., Yu, X. H., Shen, S. Y., Zhu, D. C., Ke, S., Zhou, S., Wang, L. B. & Wang, Q. L. 2013. Tectonic–Magmatic Geological Map of Tibetan Plateau and its Adjacent Area, 1:1,500,000. Beijing: Geological Publishing House.Google Scholar
Nakamura, H. & Iwamori, H. 2013. Generation of adakites in a cold subduction zone due to double subducting plates. Contributions to Mineralogy and Petrology 165, 1107–34.Google Scholar
Niu, Y. L. & Batiza, R. 1997. Trace element evidence from seamounts for recycled oceanic crust in the eastern equatorial Pacific mantle. Earth and Planetary Science Letters 148, 471–84.Google Scholar
Niu, Y. L., Zhao, Z. D, Zhu, D. C. & Mo, X. X. 2013. Continental collision zones are primary sites for net continental crust growth: a testable hypothesis. Earth-Science Reviews 127, 96110.Google Scholar
Pallares, C., Maury, R. C., Bellon, H., Royer, J. Y., Calmus, T., Aguillón-Robles, A., Cotton, J., Benoit, M., Michaud, F. & Bourgois, J. 2007. Slab-tearing following ridge-trench collision: evidence from Miocene volcanism in Baja California, México. Journal of Volcanology and Geothermal Research 161, 95117.Google Scholar
Pan, G. T., Ding, J., Yao, D. S. & Wang, L. Q. 2004. Guidebook of 1:1,500,000 Geological Map of the Qinghai–Xizang (Tibet) Plateau and Adjacent Areas. Chengdu: Cartographic Publishing House, 148 pp.Google Scholar
Peacock, S. M., Rushmer, T. & Thompson, A. B., 1994. Partial melting of subducting oceanic-crust. Earth and Planetary Science Letters 121, 227–44.Google Scholar
Peacock, S. M., van Keken, P. E., Holloway, S. D., Hacker, B. R., Abers, G. A. & Ferguson, R. L. 2005. Thermal structure of the Costa Rica–Nicaragua subduction zone. Physics of the Earth and Planetary Interiors 149, 187200.Google Scholar
Perugini, D., Poli, G., Christofides, G. & Eleftheriadis, G. 2003. Magma mixing in the Sithonia Plutonic Complex, Greece: evidence from mafic microgranular enclaves. Mineralogy and Petrology 78, 173200.Google Scholar
Petford, N. & Atherton, M. 1996. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca batholith, Peru. Journal of Petrology 37, 1491–521.Google Scholar
Petrone, C. M. & Ferrari, L. 2008. Quaternary adakite–Nb-enriched basalt association in the western Trans-Mexican Volcanic Belt: is there any slab melt evidence? Contributions to Mineralogy and Petrology 156, 7386.Google Scholar
Plank, T. 2005. Constraints from thorium/lanthanumon sediment recycling at subduction zones and the evolution of the continents. Journal of Petrology 46, 921–44.Google Scholar
Plank, T. & Langmuir, C. H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology 145, 325–94.Google Scholar
Qiu, J. S., Wang, R. Q., Zhao, J. L. & Yu, S. B. 2015. Petrogenesis of the Early Jurassic gabbro-granite complex in the middle segment of the Gangdese belt and its implications for tectonic evolution of Neo-Tethys: a case study of the Dongga pluton in Xigaze. Acta Petrologica Sinica 31, 3569–80 (in Chinese with English abstract).Google Scholar
Qiu, R. Z., Zhou, S., Deng, J. F., Li, J. F., Xiao, Q. H. & Cai, Z. Y. 2004. Dating of gabbro in the Shemalagou ophiolite in the western segment of the Bangong Co-Nujiang ophiolite belt, Tibet – with a discussion of the age of the Bangong Co-Nujiang ophiolite belt. Geology in China 31, 262–8 (in Chinese with English abstract).Google Scholar
Qu, X. M., Xin, H. B. & Xu, W. Y. 2007. Collation of age of ore-hosting volcanics in Xiongcun superlarge Cu–Au deposit on basis of three zircon U–Pb SHRIMP ages. Mineral Deposits 26, 512–8 (in Chinese with English abstract).Google Scholar
Rapp, R., Shimizu, N., Norman, M. & Applegate, G. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chemical Geology 160, 335–56.Google Scholar
Rapp, R. P. & Watson, E. B. 1995. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling. Journal of Petrology 36, 891931.Google Scholar
Ribeiro, J. M., Maury, R. C. & Grégoire, M. 2016. Are Adakites slab melts or high-pressure fractionated mantle melts? Journal of Petrology 57, 839–62.Google Scholar
Rodríguez, C., Sellés, D., Dungan, M., Langmuir, C. & Leeman, W. 2007. Adakitic dacite formed by intracrustal crystal fractionation of water-rich parent magmas at Nevado de Longavi Volcano (36.2°S; Andean Southern Volcanic Zone, Central Chile). Journal of Petrology 48, 2033–61.Google Scholar
Rollinson, H. R. 1993. Discriminating between tectonic environments using geochemical data. In Using Geochemical Data: Evaluation, Presentation, Interpretation, pp. 171214. Harlow: Longman Scientific & Technical.Google Scholar
Sajona, F. G., Maury, R. C., Bellon, H., Cotton, J., Defant, M. J., Pubellier, M. & Rangin, C. 1993. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology 21, 1007–10.Google Scholar
Schärer, U., Xu, R. H. & Allegre, C. J. 1984. U–Pb geochronology of Gangdese (Transhimalaya) plutonism in the Lhasa–Xigaze region, Tibet. Earth and Planetary Science Letters 69, 311–20.Google Scholar
Sen, C. & Dunn, T. 1994. Experimental modal metasomatism of a spinel lherzolite and the production of amphibole-bearing peridotite. Contributions to Mineralogy and Petrology 119, 422–32.Google Scholar
Sengör, A. M. C., Altlner, D., Cin, A., Ustaiimer, T. & Hsti, K. J. 1988. Origin and assembly of the Tethyside orogenic collage at the expense of Gondwana Land. In Gondwana and Tethys (ed. Audley-Charles, M. G.), pp. 119–81. Geological Society of London, Special Publication no. 37, 119–81.Google Scholar
Shellnutt, J. G., Jahn, B. M. & Dostal, J. 2010. Elemental and Sr–Nd isotope geochemistry of microgranular enclaves from peralkaline A-type granitic plutons of the Emeishan large igneous province, SW China. Lithos 119, 3446.Google Scholar
Shui, X. F., He, Z. Y., Zhang, Z. M. & Lu, T. Y. 2016. Magma origin of Early Jurassic tonalites in the Eastern Gangdese Magmatic Belt, southern Tibet and its implications for the crustal evolution of the Lhasa Terrane. Acta Geologica Sinica 90, 3129–52 (in Chinese with English abstract).Google Scholar
Söderlund, U., Patchett, P. J., Vervoort, J. D. & Isachsen, C. E. 2004. The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters 219, 311–24.Google Scholar
Song, S. W., Liu, Z., Zhu, D. C., Wang, Q., Zhang, L. X., Zhang, L. L. & Zhao, Z. D. 2014. Zircon U–Pb chronology and Hf isotope of the Late Triassic andesitic magmatism in Dajiacuo, Tibet. Acta Petrologica Sinica 30, 3100–12 (in Chinese with English abstract).Google Scholar
Sparks, R. S. J. & Marshall, L. A. 1986. Thermal and mechanical constraints on mixing between mafic and silicic magmas. Journal of Volcanology and Geothermal Research 29, 99124.Google Scholar
Stern, C. R. & Kilian, R. 1996. Role of the subduction slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology 123, 263–81.Google Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Taylor, S. R. & McLennan, S. M. 1985. The Continental Crust: Its Composition and Evolution. London: Blackwell, 328 pp.Google Scholar
Thorkelson, D. J. & Breitsprecher, K. 2005. Partial melting of slab window margins: genesis of adakitic and non-adakitic magmas. Lithos 79, 2541.Google Scholar
van Keken, P. E., Hacker, B. R., Syracuse, E. M. & Abers, G. A. 2011. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. Journal of Geophysical Research: Solid Earth 116, B01401.Google Scholar
Vernon, R. 1984. Microgranitoid enclaves in granites–globules of hybrid magma quenched in a plutonic environment. Nature 309, 438–9.Google Scholar
Waight, T. E., Maas, R. & Nicholls, I. A. 2000. Fingerprinting feldspar phenocrysts using crystal isotopic composition stratigraphy: implications for crystal transfer and magma mingling in S-type granites. Contributions to Mineralogy and Petrology 139, 227–39.Google Scholar
Wang, Q., Li, X. H., Jia, X. H., Wyman, D., Tang, G. J., Li, Z. X., Ma, L., Yang, Y. H., Jiang, Z. Q. & Gou, G. N. 2012. Late Early Cretaceous adakitic granitoids and associated magnesian and potassium-rich mafic enclaves and dikes in the Tunchang–Fengmu area, Hainan Province (South China): partial melting of lower crust and mantle, and magma hybridization. Chemical Geology 328, 222–43.Google Scholar
Wang, C., Ding, L., Zhang, L. Y., Kapp, P., Pullen, A. & Yue, Y. H. 2016. Petrogenesis of Middle-Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane: Implications for early subduction of Neo-Tethyan oceanic lithosphere. Lithos 262, 320333.Google Scholar
Wei, Y. Q. 2014. The geochronology, geochemistry and petrogenesis of the volcanic rocks of Yeba Formation, southern Tibet. Master thesis, China University of Geosciences, Beijing. Published thesis.Google Scholar
Wen, D. R., Chung, S. L., Song, B., Iizuka, Y., Yang, H. J., Ji, J. Q., Liu, D. Y. & Gallet, S. 2008a. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: petrogenesis and tectonic implications. Lithos 105, 111.Google Scholar
Wen, D. R., Liu, D., Chung, S. L., Chu, M. F., Ji, J., Zhang, Q., Song, B., Lee, T. Y., Yeh, M. W. & Lo, C. H. 2008b. Zircon SHRIMP U–Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology 252, 191201.Google Scholar
Xu, W., Gao, S., Wang, Q., Wang, D. & Liu, Y. 2006. Mesozoic crustal thickening of the eastern North China craton: evidence from eclogite xenoliths and petrologic implications. Geology 34, 721–4.Google Scholar
Xu, W. C., Zhang, H. F., Luo, B. J., Guo, L. & Yang, H. 2015. Adakite-like geochemical signature produced by amphibole-dominated fractionation of arc magmas: an example from the Late Cretaceous magmatism in Gangdese belt, south Tibet. Lithos 232, 197210.Google Scholar
Yang, J. H., Wu, F. Y., Wilde, S., Xie, L. W., Yang, Y. H. & Liu, X. M. 2007. Tracing magma mixing in granite genesis: in situ U–Pb dating and Hf-isotope analysis of zircons. Contributions to Mineralogy and Petrology 153, 177–90.CrossRefGoogle Scholar
Yang, Z. M., Hou, Z. Q., Jiang, Y. F., Zhang, H. R. & Song, Y. C. 2011. Sr-Nd-Pb and zircon Hf isotopic constraints on petrogenesis of the Late Jurassic granitic porphyry at Qulong, Tibet. Acta Petrologica Sinica 27, 2003–10 (in Chinese with English abstract).Google Scholar
Yin, A. & Harrison, T. M. 2000. Geologic evolution of the Himalayan–Tibetan Orogen. Annual Review of Earth and Planetary Sciences 28, 211–80.CrossRefGoogle Scholar
Yogodzinski, G. M. & Kelemen, P. B. 1998. Slab melting in the Aleutians: implications of an ion probe study of clinopyroxene in primitive adakite and basalt. Earth and Planetary Science Letters 158, 5365.Google Scholar
Yogodzinski, G., Lees, J., Churikova, T., Dorendorf, F., Woerner, G. & Volynets, O. 2001. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature 409, 500–4.Google Scholar
Zhang, H. F., Xu, W. C., Guo, J. Q., Zong, K. Q., Cai, H. M. & Yuan, H. L. 2007a. Zircon U–Pb and Hf isotopic composition of deformed granite in the southern margin of the Gangdese belt, Tibet: evidence for early Jurassic subduction of Neo-Tethyan oceanic slab. Acta Petrologica Sinica 23, 1347–53 (in Chinese with English abstract).Google Scholar
Zhang, H. F., Xu, W. C., Guo, J. Q., Zong, K. Q., Cai, H. M. & Yuan, H. L. 2007b. Indosinian orogenesis of the gangdise terrane: evidences from zircon U-Pb dating and petrogenesis of granitoids. Earth Science – Journal of China University of Geoscience 32, 155–66 (in Chinese with English abstract).Google Scholar
Zhang, Z. M., Zhao, G. C., Santosh, M., Wang, J. L., Dong, X. & Shen, K. 2010. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: evidence for Neo-Tethyan mid-ocean ridge subduction? Gondwana Research 17, 615–31.Google Scholar
Zhao, Z. H., Xiong, X. L., Wang, Q., Wyman, D. A., Bao, Z. W., Bai, Z. H. & Qiao, Y. L. 2008. Underplating related adakites in Xinjiang Tianshan, China. Lithos 102, 374–91.Google Scholar
Zheng, Y. C., Hou, Z. Q., Li, Q. Y., Sun, Q. Z., Liang, W., Fu, Q., Li, W. & Huang, K. X. 2012. Origin of Late Oligocene adakitic intrusives in the southeastern Lhasa terrane: evidence from in situ zircon U–Pb dating, Hf–O isotopes, and whole-rock geochemistry. Lithos 148, 296311.CrossRefGoogle Scholar
Zhong, H. T., Dai, J. G., Wang, C. S., Li, Y. L. & Wei, Y. S. 2016. Middle Jurassic-Early Cretaceous radiolarian assemblages of the western Yarlung Zangbo Suture Zone: implications for the evolution of the Neo-Tethys. Geoscience Frontiers, Published online 15 October 2016. https://doi.org/10.1016/j.gsf.2016.09.006.Google Scholar
Zhu, D. C., Pan, G. T., Chung, S. L., Liao, Z. L., Wang, L. Q. & Li, G. M. 2008. SHRIMP zircon age and geochemical constraints on the origin of lower Jurassic volcanic rocks from the Yeba formation, Southern Gangdese, south Tibet. International Geology Review 50, 442–71.CrossRefGoogle Scholar
Zhu, D. C., Wang, Q., Zhao, Z. D., Chung, S. L., Cawood, P. A., Niu, Y. L., Liu, S. A., Wu, F. Y. & Mo, X. X. 2015. Magmatic record of India–Asia collision. Scientific Reports 5, 14289.Google Scholar
Zhu, D. C., Zhao, Z. D., Niu, Y. L., Mo, X. X., Chung, S. L. & Hou, Z. Q. 2011a. The Lhasa Terrane: record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters 301, 241–55.Google Scholar
Zhu, D. C., Zhao, Z. D., Niu, Y. L., Dilek, Y. & Mo, X. X., 2011b. Lhasa terrane in southern Tibet came from Australia. Geology 39, 727–30.Google Scholar
Zhu, D. C., Zhao, Z. D., Pan, G. T., Lee, H. Y., Kang, Z. Q., Liao, Z. L., Wang, L. Q., Li, G. M., Dong, G. C. & Liu, B. 2009. Early Cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet: products of slab melting and subsequent melt–peridotite interaction? Journal of Asian Earth Sciences 34, 298309.Google Scholar
Supplementary material: File

Shui supplementary material

Shui supplementary material 1

Download Shui supplementary material(File)
File 17.4 KB
Supplementary material: File

Shui supplementary material

Shui supplementary material 2

Download Shui supplementary material(File)
File 41.8 KB
Supplementary material: File

Shui supplementary material

Shui supplementary material 3

Download Shui supplementary material(File)
File 42 KB
Supplementary material: File

Shui supplementary material

Shui supplementary material 4

Download Shui supplementary material(File)
File 70.5 KB
Supplementary material: File

Shui supplementary material

Shui supplementary material 5

Download Shui supplementary material(File)
File 40.6 KB