Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-19T17:46:19.475Z Has data issue: false hasContentIssue false

The Ediacaran biota and early metazoan evolution

Published online by Cambridge University Press:  01 May 2009

S. Conway Morris
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, U.K.

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Essay Reviews
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M. M. & Conway Morris, S. 1982. A review, with descriptions of four unusual forms, of the soft-bodied fauna of the Conception and St. John's Groups (Late Precambrian), Avalon Peninsula, Newfoundland. Third North American Paleontological Convention, Proceedings 1, 18.Google Scholar
Birket-Smith, S. J. R. 1981. A reconstruction of the Precambrian Spriggina. Zoologische Jahrbücher (Anat.) 105, 237–58.Google Scholar
Borovikov, L. I. 1976. First find of fossil dickinsonias in lower Cambrian sediments in the USSR. Doklady (Proceedings) of the Academy of Sciences of the USSR 231, 53–5.Google Scholar
Brasier, M. D. 1979. The Cambrian radiation event. In The Origin of Major Invertebrate Groups (ed. House, M. R.), pp. 103–59. London: Academic Press.Google Scholar
Chen, Meng'e. 1984. A discussion about the ‘Medusa fossils’ from Wuhangshan Group of late Precambrian, Liaodong Peninsula, China. Scientia geologica sinica for 1984 (1), 51–7 (in Chinese, with English summary).Google Scholar
Cloud, P. 1948. Some problems and patterns of evolution exemplified by fossil invertebrates. Evolution 2, 322–50.CrossRefGoogle ScholarPubMed
Cloud, P. 1976. Beginnings of biospheric evolution and their biogeochemical consequences. Paleobiology 2, 351–87.CrossRefGoogle Scholar
Cloud, P., Gustafson, L. B. & Watson, J. A. L. 1980. The works of living social insects as pseudofossils and the age of the oldest known Metazoa. Science, New York 210, 1013–15.CrossRefGoogle ScholarPubMed
Cloud, P., Wright, J. & Glover, L. 1976. Traces of animal life from 620-million-year-old rocks in North Carolina. American Scientist 64, 396406.Google Scholar
Fedonkin, M. A. (1983). Organic world of the Vendian. Stratigraphy, palaeontology. Itogi Nauki i Tekhniki (VINITI) 12, 1128. Akad. Nauk SSSR (in Russian).Google Scholar
Gould, S. J. (1984). The Ediacaran experiment. Natural History, New York 93 (2), 1423.Google Scholar
Jenkins, J. R. F., Ford, C. H. & Gehling, J. G. 1983. The Ediacaran Member of the Rawnsley Quartzite: the context of the Ediacaran assemblage (late Precambrian, Flinders Ranges). Journal of the Geological Society of Australia 30, 101–19.Google Scholar
Jollie, M. 1982. What are the ‘Calcichordata’? and the larger question of the origin of chordates. Zoological Journal of the Linnean Society of London 75, 167–88.Google Scholar
Kauffman, E. G. & Fürsich, F. 1983. Brooksella canyonensis: a billion year old complex metazoan trace fossil from the Grand Canyon. Geological Society of America, Abstracts with Programs 15(6), 608.Google Scholar
Kauffman, E. G. & Steidtmann, J. R. 1981. Are these the oldest metazoan trace fossils? Journal of Paleontology 55, 923–47.Google Scholar
Lewin, R. 1984. Alien beings here on Earth. Science, New York 223, 39.CrossRefGoogle ScholarPubMed
McMenamin, M. A. S. 1982. A case for two late Proterozoic-earliest Cambrian faunal province loci. Geology 10, 290–2.2.0.CO;2>CrossRefGoogle Scholar
Rhoads, D. C. & Morse, J. W. 1971. Evolutionary and ecologic significance of oxygen-deficient marine basins. Lethaia 4, 413–28.Google Scholar
Runnegar, B. 1982 a. A molecular-clock date for the origin of the animal phyla. Lethaia 15, 199205.CrossRefGoogle Scholar
Runnegar, B. 1982 b. The Cambrian explosion: animals or fossils? Journal of the Geological Society of Australia 29, 395411.CrossRefGoogle Scholar
Runnegar, B. 1982 c. Oxygen requirements, biology and phylogenetic significance of the Late Precambrian worm Dickinsonia, and the evolution of the burrowing habit. Alcheringa 6, 223–39.Google Scholar
Schram, F. R. 1983. Method and madness in phylogeny. In Crustacean Phylogeny (ed. Schram, F. R.), pp. 331–50. Rotterdam: Balkema Publishers.Google Scholar
Seilacher, A. 1983. Precambrian metazoan extinctions. Geological Society of America, Abstracts with Programs 15, 683.Google Scholar
Sepkoski, J. J. 1979. A kinetic model of Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria. Paleobiology 5, 222–51.CrossRefGoogle Scholar
Sokolov, B. S. 1976. Precambrian Metazoa and the Vendian–Cambrian boundary. Paleontological Journal 10, 113.Google Scholar
Sokolov, B. S. & Fedonkin, M. A. 1984. The Vendian as the terminal system of the Precambrian. Episodes 7, 1219.Google Scholar
Stasek, C. R. 1972. The molluscan framework. In Chemical Zoology Vol. 7 (ed. Florkin, M. and Scheer, B. T.), pp. 144. London: Academic Press.Google Scholar
Teeter, S. A. 1984. Pteridinium from the Carolina Slate Belt, Stanly County, North Carolina, Geological Society of America, Abstracts with Programs 16, 66.Google Scholar
Towe, K. M. 1970. Oxygen-collagen priority and the early metazoan fossil record. Proceedings of the National Academy of Sciences of the U.S.A. 65, 781–8.CrossRefGoogle ScholarPubMed
Whittington, H. B. 1977. The Middle Cambrian trilobite Naraoia, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society B 280, 409–43.Google Scholar