Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T13:03:42.323Z Has data issue: false hasContentIssue false

First discovery of Early Palaeozoic Bathysiphon (Foraminifera) – test structure and habitat of a ‘living fossil’

Published online by Cambridge University Press:  12 April 2012

ED LANDING*
Affiliation:
New York State Museum, 222 Madison Avenue, Albany, NY 12230USA
SANDRA PATRUCCO REYES
Affiliation:
Wadsworth Center, New York State Department of Health, P. O. Box 509, Albany, NY 12201–0509USA
AMANDA L. ANDREAS
Affiliation:
Wadsworth Center, New York State Department of Health, P. O. Box 509, Albany, NY 12201–0509USA
SAMUEL S. BOWSER
Affiliation:
Wadsworth Center, New York State Department of Health, P. O. Box 509, Albany, NY 12201–0509USA
*
Author for correspondence: elanding@mail.nysed.gov

Abstract

The giant, agglutinated foraminiferan Bathysiphon Sars, previously Triassic–Recent, occurs in much older sedimentary rock (Early Ordovician, late early Tremadocian) of Avalonia. The genus extends back to c. 485 Ma based on its discovery in platform mudstone of the Chesley Drive Group in Cape Breton Island, Nova Scotia. Elongate (up to 60 mm), epibenthic Bathysiphon tubes occur in wave-rippled, green-grey mudstone with a low diversity, probably dysoxic fauna. The mudstone is coeval with and lithologically similar to the Shineton Formation in Shropshire and the Welsh Borderlands. Scanning microscopy of the Bathysiphon walls shows imbricated mica grains that parallel the long axis of the tests. The lumen has a mélange of packed sediment grains, some of which are spherical structures of siliciclastic mud studded with tetrahedral pyrite crystals. A felt-like, agglutinated test, a lumen packed with spherical structures (probable stercomata) and the domal ends of some specimens are consistent with modern Bathysiphon. This report is the first time that cytoplasmic activity and stercomata formation have been used to refer fossil protists to a modern group. Bathysiphon differs from the Cambrian foraminiferan Platysolenites Pander, which has an open lumen without stercomata, but support a comparable, sediment deposit-feeding niche. Bathysiphon is truly a ‘living fossil’, with a mode of test construction, cytoplasmic activity that formed stercomata and a niche unchanged for almost 500 million years. Foraminiferans have not been found prior to the Cambrian Period, and the Early Cambrian appearance of agglutinated foraminiferans is part of the radiation of Phanerozoic communities.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adl, S. M., Simpson, G. B., Farmer, M. A., Andersen, R. A., Anderson, O. R., Barta, J. R., Bowser, S. S., Brugerolle, G., Fensome, R. A., Fredericq, S., James, T. Y., Karpov, S., Kugrens, P., Krug, S., Lane, C. E., Lewis, L. A., Lodge, J., Lynn, D. H., Mann, D. G., McCourt, R., M., Mendoza, L., Moestrup, Ø, Mozley-Standridge, S. E., Nerad, T. A., Shearer, C. A., Smirnov, A., V., Spiegel, F. W. & Taylor, M. F. J. R. 2005. The new higher level classification of eucaryotes with emphasis on the taxonomy of protists. Journal of Eukaryotic Microbiology 52, 399451.Google Scholar
Antcliffe, J. B., Gooday, A. J. & Brasier, M. D. 2011. Testing the protozoan hypothesis for Ediacaran fossils: a developmental analysis of Palaeopascichnus . Palaeontology 54, 1157–75.Google Scholar
Barr, S. M., White, C. E. & MacDonald, A. S. 1992. Revision of upper Precambrian–Cambrian stratigraphy, southeastern Cape Breton Island. Geological Survey of Canada, Current Research, Part D, Paper 92–1D, 21–6.Google Scholar
Bell, W. A. & Gorenson, E. A. 1938. Sydney Sheet, West Half. Geological Survey of Canada, Map 360A.Google Scholar
Bosak, T., Lahr, D. J. G., Pruss, S. B., Macdonald, F. A., Gooday, A. J., Dalton, L. & Matys, E. D. 2011. Possible early foraminiferans in post-Sturtian (716–635 Ma) cap carbonates. Geology 40, 6770.Google Scholar
Callaway, C. 1877. On a new area of Upper Cambrian rocks in south Shropshire, with a description of a new fauna. Quarterly Journal of the Geological Society of London 33, 652–72.Google Scholar
Cartwright, N. G., Gooday, A. J. & Jones, A. R. 1989. The morphology, internal organization, and taxonomic position of Rhizammina algaeformis Brady, a large, agglutinated deep-sea foraminifer. Journal of Foraminiferal Research 19, 115–25.Google Scholar
Clauer, N. & Kröner, A. 1979. Strontium and argon isotopic homogenization of pelitic sediments during low-grade regional metamorphism: the Pan-African Upper Damara Sequence of northern Namibia. Earth and Planetary Science Letters 43, 117–31.Google Scholar
Cole, K. E. & Valentine, A. M. 2006. Titanium biominerals: Titania in the test of the foraminiferan Bathysiphon argenteus . Dalton Transactions 2006, 430–2.Google Scholar
Culver, S. J. 1991. Early Cambrian Foraminifera from west Africa. Science 254, 689–91.Google Scholar
Culver, S. J. 1994. Early Cambrian Foraminifera from the southwestern Taoudeni Basin, west Africa. Journal of Foraminiferal Research 24, 191238.Google Scholar
Dujardin, F. 1835. Observations sur les organisms inférieures. Compte Rendu du Academie des Sciences naturelles, Series 2 4, 343–76.Google Scholar
Eichwald, E. 1860. Lethaia Rossica ou Palaeontologie de la Russie. Stuttgart (publisher not named), 1657 pp.Google Scholar
Fliegel, D., Wirth, R., Simonetti, A., Furnes, H., Staudigel, H., Hanski, E. & Muehlenbachs, K. 2010. Septate-tubular textures in 2.0-Ga pillow lavas from the Pechenga Greensgone Belt: a nano-spectroscopic approach to investigate their biogenicity. Geobiology 8, 373–90.Google Scholar
Folin, L. de. 1886. Les bathysiphons: première pages d'une monographie du genre. Actes de les Sociéte Linnéenne de Bordeaux 40, 271–89.Google Scholar
Fortey, R. A., Harper, D. A. T., Ingham, J. K., Owen, A. W., Parkes, M. A., Rushton, A. W. A. & Woodcock, N. H. 2000. A Revised Correlation of Ordovician Rocks of the British Isles. Geological Society of London, Special Report no. 24, 83 pp.Google Scholar
Fortey, R. A. & Owens, R. M. 1991. A trilobite fauna from the highest Shineton Shales in Shropshire, and the correlation of the latest Tremadoc. Geological Magazine 128, 437–64.Google Scholar
Føyn, S. & Glaessner, M. F. 1979. Platysolenites, other animal fossils, and the Precambrian–Cambrian boundary in Norway. Norsk Geologisk Tiddskrift 59, 2546.Google Scholar
Gaucher, C. & Sprechmann, P. 1999. Upper Vendian skeletal fauna of the Arroyo del Soldado Group, Uruguay. Beringeria 23, 5591.Google Scholar
Glaessner, M. F. 1978. The oldest Foraminifera. Australian Bureau for Mineral Research, Geology and Geophysics Bulletin 192, 61–5.Google Scholar
Gooday, A. J. 1988. The genus Bathysiphon (Protista, Foraminiferida) in the NE Atlantic: revision of some species described by de Folin. Journal of Natural History 22, 7193.Google Scholar
Gooday, A. J. & Bowser, S. S. 2005. The second species of Gromia (Protista) from the deep sea: its natural history and association with the Pakistan margin Oxygen Minimum Zone. Protist 156, 113–26.CrossRefGoogle ScholarPubMed
Gooday, A. J., Pond, D. W. & Bowser, S. S. 2002. Ecology and nutrition of the large agglutinated foraminiferan Bathysiphon capillare in the bathyal NE Atlantic: distribution within the sediment profile and lipid biomarker composition. Marine Ecology Progress Series 245, 6982.CrossRefGoogle Scholar
Heron-Allen, E. & Earland, A. 1913. Clare Island Survey. Part 64, Foraminifera. Proceedings of the Royal Irish Academy 31, 1188.Google Scholar
Hua, H., Chen, Z., Yuan, X.-L., Xiao, S.-L. & Cai, Y.-P. 2010. The earliest foraminifera from southern Shaanxi, China. Science China, Earth Sciences 53, 1756–64.Google Scholar
Hutchinson, R. D. 1952. The stratigraphy and trilobite faunas of the Cambrian sedimentary rocks of Cape Breton Island, Nova Scotia. Geological Survey of Canada Memoir 263, 1124.Google Scholar
Johnson, K. A., Culver, S. J. & Kamola, D. L. 2005. Marginal marine Foraminifera of the Blackhawk Formation (Late Cretaceous, Utah). Journal of Foraminiferal Research 35, 5064.CrossRefGoogle Scholar
Keppie, J. D. & Muecke, G. K. 1979. Metamorphic Map of Nova Scotia. Scale 1:1,000,000. Nova Scotia Department of Mines and Energy.Google Scholar
Landis, C. A. 1971. Graphitization of dispersed carbonaceous material in metamorphic rocks. Contributions to Mineralogy and Petrology 30, 3445.Google Scholar
Landing, E. 1996. Avalon – insular continent by the latest Precambrian. In Avalonian and Related Peri-Gondwanan Terranes of the Circum-North Atlantic (eds Nance, R. D. & Thompson, M.), p. 2764. Geological Society of America, Special Paper 304.Google Scholar
Landing, E. 2004. Precambrian–Cambrian boundary interval deposition and the marginal platform of the Avalon microcontinent. Journal of Geodynamics 37, 411–35.Google Scholar
Landing, E. 2005. Early Paleozoic Avalon–Gondwana unity: an obituary – response to “Palaeontological evidence bearing on global Ordovician–Silurian continental reconstructions” by R. A. Fortey and L. R. M. Cocks. Earth-Science Reviews 69, 169–75.Google Scholar
Landing, E., Bowring, S. A., Fortey, R. A. & Davidek, K. L. 1997. U-Pb zircon date from Avalonian Cape Breton Island and geochronologic calibration of the Early Ordovician. Canadian Journal of Earth Sciences 34, 724–30.Google Scholar
Landing, E., English, A. & Keppie, J. D. 2010. Cambrian origin of all skeletalized metazoan phyla – discovery of Earth's oldest bryozoans (Upper Cambrian, southern Mexico). Geology 38, 547–50.Google Scholar
Landing, E. & Fortey, R. A. 2011. Tremadocian (Lower Ordovician) biotas and sea-level changes on the Avalon microcontinent. Journal of Paleontology 85, 680–96.Google Scholar
Landing, E., Geyer, G. & Bartowski, K. E. 2002. Latest Early Cambrian small shelly fossils, trilobites, and Hatch Hill dysaerobic interval on the east Laurentian continental slope. Journal of Paleontology 76, 285303.Google Scholar
Landing, E. & Westrop, S. R. 2004. Environmental patterns in the origin and evolution and diversification loci of Early Cambrian skeletalized Metazoa: evidence from the Avalon microcontinent. In Neoproterozoic–Cambrian Biological Revolutions (eds Lipps, J. H. & Wagoner, B.), pp. 93105. Paleontological Society Papers 10. The Paleontological Society.Google Scholar
Lipps, J. H. 1992 a. Proterozoic and Cambrian skeletonized protists. In The Proterozoic Biosphere (eds Schopf, W. J. & Klein, C.), pp. 237–40. Cambridge: Cambridge University Press.Google Scholar
Lipps, J. H. 1992 b. Origin and early evolution of Foraminifera. In Studies in Benthic Foraminifera (eds Saito, T. & Takayangi, T.), pp. 39. Proceedings of the Fourth International Symposium on Benthic Foraminifera, “Benthos ’90”, Sendai, Japan, 1990. Tokai University Press.Google Scholar
Lipps, J. H. & Rozanov, A. Yu. 1996. The late Precambrian–Cambrian agglutinated fossil Platysolenites . Paleontological Journal 30, 679–87.Google Scholar
Loeblich, A. R. Jr. & Tappan, H. 1964. Protista. In Treatise on Invertebrate Paleontology. Part C1, 2 (ed. Moore, R. C.), pp. 1900. Lawrence: University of Kansas Press.Google Scholar
Loeblich, A. R. Jr. & Tappan, H. 1987. Foraminiferal Genera and their Classification. New York: Van Nostrand Reinhold, 589 pp.Google Scholar
Małecki, J. 1973. Bathysiphons from the Eocene of the Carpathian flysch, Poland. Acta Palaeontologica Polonica 18, 153–72.Google Scholar
Maloof, A. C., Porter, S. M., Moore, J. L., Dudás, F. Ö, Bowring, S. A., Higgins, J. A., Fike, D. A. & Eddy, M. P. 2010. The earliest Cambrian record of animals and ocean geochemical change. Geological Society of America Bulletin 122, 1731–74.Google Scholar
Matthew, G. F. 1901. New species of Cambrian fossils from Cape Breton. Bulletin of the Natural Historical Society of New Brunswick 4, 269–86.Google Scholar
Matthew, G. F. 1903. Report on the Cambrian rocks of Cape Breton. Geological Survey of Canada, Publication 797, 245 pp.Google Scholar
McIlroy, D., Green, O. R. & Brasier, M. D. 2001. Palaeobiology and evolution of the earliest agglutinated Foraminifera: Platysolenites, Spirosolenites and related forms. Lethaia 34, 1329.Google Scholar
Miller, W. 1987. Giant Bathysiphon (Foraminiferida) from Cretaceous turbidites, northern California. Lethaia 21, 363–74.Google Scholar
Miller, W. 2005. Giant Bathysiphon (Astrorhizina: Foraminifera) from the Cretaceous Hunders Cove Formation, southwestern Oregon. Journal of Paleontology 79, 389–94.Google Scholar
Miller, W. 2008. A Bathysiphon (Foraminifera) ‘shell bed’ from the Cretaceous of northern California, USA: example of a parautochthonous macro-skeletal deposit in deep-sea turbidites. Palaeogeography, Palaeoclimatology, Palaeoecology 260, 342–6.Google Scholar
Nicholson, H. A. 1873. Contributions to the study of the errant annelids of the older Palaeozoic rocks. Royal Society of London Proceedings 21, 288–90.Google Scholar
Owens, R. M., Fortey, R. A., Cope, J. C. W., Rushton, A. W. A. & Bassett, M. G. 1982. Tremadoc faunas from the Carmarthen District, South Wales. Geological Magazine 119, 138.Google Scholar
Pander, C. H. 1851. Sur uné décoverte de fossils faite dans la partie infériure du terrain des Russie. Bulletin de la Societe Geologique de France 8, 251–9.Google Scholar
Pawlowski, J., Holzmann, M., Berney, C., Fahrni, J., Gooday, A. J., Cedhagen, T., Habura, A. & Bowser, S. S. 2003. The evolution of early Foraminifera. Proceedings of the National Academy of Sciences 100, 11494–8.Google Scholar
Porter, S. M., Meisterfeld, R. & Knoll, A. H. 2003. Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae. Journal of Paleontology 77, 409–29.Google Scholar
Sageman, B. B., Wignall, P. B. & Kauffman, E. G. 1991. Biofacies models for oxygen-deficient epicontinental seas: tool for paleoenvironmental analysis. In Cycles and Environments in Stratigraphy (eds Einsele, G. W., Ricken, W. & Seilacher, A.), pp. 3059. New York: Springer-Verlag.Google Scholar
Saja, D. B., Pfefferkorn, H. W. & Phillips, S. P. 2009. Bathysiphon (Foraminiferida) at Pacheo Pass, California: a geopetal, paleocurrent, and paleobathymetric indicator in the Franciscan complex. Palaios 24, 181–91.Google Scholar
Salter, J. W. 1866. Appendix on the fossils of North Wales. Geological Survey of Great Britain, Memoir 3, 240381.Google Scholar
Sars, G. O. 1872. Undersøgelser ofver Hardangerfjordens Fauna. Videnskaps-Selske Christiana, Förhandlingar volume for 1871, 246–55.Google Scholar
Scott, D. B, Medioli, F. & Braund, R. 2003. Foraminifera from the Cambrian of Nova Scotia: the oldest multichambered foraminifera. Micropaleontology 49, 109–26.Google Scholar
Stow, D. A. V., Alam, M. & Piper, D. J. W. 1984. Sedimentology of the Halifax Formation, Nova Scotia: Lower Palaeozoic fine-grained turbidites. In Fine-grained Sediments: Deep-water Processes and Facies (eds Piper, D. J. W. & Stow, D. A. V.), pp. 127–44. Geological Society of London, Special Publication no. 15.Google Scholar
Streng, M., Babcock, L. E. & Hollingsworth, J. S. 2005. Agglutinated protists from the Lower Cambrian of Nevada. Journal of Paleontology 79, 1214–18.Google Scholar
Vachard, D., Pille, L. & Gaillot, J. 2010. Palaeozoic Foraminifera: systematics, palaeoecology and responses to global changes. Revue de Micropaléontologie 53, 209–54.Google Scholar
Walcott, C. D. 1912. Cambrian Brachiopoda. Monographs of the United States Geological Survey, 51.Google Scholar
Webby, B. D., Cooper, R. A., Bergström, S. M. & Paris, F. 2004. Stratigraphic framework and time slices. In The Great Ordovician Biodiversification Event (eds Webby, B. D., Paris, F., Droser, M. L. & Percival, I. G.), pp. 41–8. New York: Columbia University Press.Google Scholar
Weeks, L. J. 1947. Mira-Framboise, Richmond and Cape Breton Counties, Nova Scotia. Geological Survey of Canada Paper 47–17, 1 pp.Google Scholar
Westrop, S. R., Adrain, J. M. & Landing, E. 2011. The agnostoid arthropod Lotagnostus Whitehouse, 1936, in North American Laurentia and Avalon: systematics and biostratigraphic significance. Bulletin of Geosciences, Czech Geological Survey 86, 569–94.Google Scholar
Winchester-Seeto, T. M. & McIlroy, D. 2006. Lower Cambrian melanosclerites and foraminiferal linings from the Lontova Formation, St. Petersburg, Russia. Review of Palaeobotany and Palynology 139, 71–9.CrossRefGoogle Scholar