Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T21:57:33.704Z Has data issue: false hasContentIssue false

The first Furongian (late Cambrian) echinoderm from the British Isles

Published online by Cambridge University Press:  01 June 2012

SAMUEL ZAMORA*
Affiliation:
Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
*

Abstract

Furongian (late Cambrian) echinoderms are extremely rare in the fossil record and only two previous reports have been described from the Paibian Stage worldwide. Here, the third occurrence of an echinoderm from the Paibian, and the first ever reported in the Furongian of Britain is presented. It is a primitive pelmatozoan which shows intermediate characteristics between eocrinoids with columnal-bearing stems and primitive glyptocystitid rhombiferans. The palaeobiogeographic affinities of Cambrian echinoderm faunas from Britain, eastern Avalonia, are shown to be with Gondwana.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, P. M., Jackson, A. A. & Rushton, A. W. A. 1981. The stratigraphy of the Mawddach Group in the Cambrian succession of North Wales. Proceedings of the Yorkshire Geological Society 43, 295329.Google Scholar
Álvaro, J. J., Elicki, O., Geyer, G., Rushton, A. W. A. & Shergold, J. H. 2003. Palaeogeographical controls on the Cambrian trilobite immigration and evolutionary patterns reported in the western Gondwana margin. Palaeogeography, Palaeoclimatology, Palaeoecology 195, 535.Google Scholar
Bruguière, J. G. 1791. Tableau Encyclopédique et Méthodique des Trois Règnes de la Nature, contenant l'Helminthologie, ou les Vers Infusoires, les Vers Intestins, les Vers Mollusques, etc., Volume 7. Paris: Panckoucke.Google Scholar
Cocks, L. R. M. & Fortey, R.A. 2009. Avalonia: a long-lived terrane in the Lower Palaeozoic? In Early Palaeozoic Peri-Gondwana Terranes: New Insights from Tectonics and Biogeography (ed. Bassett, M. G.), pp. 141–55. Geological Society of London, Special Publication no. 325.Google Scholar
Domínguez-Alonso, P. 2004. Sistemática, anatomía, estructura y función de Ctenocystoidea (Echinodermata Carpoidea del Paleozoico inferior). Ph.D. thesis, Universidad Complutense, Madrid, Spain, 538 pp. Published thesis. Available online at: http://eprints.ucm.es/tesis/bio/ucm-t23248.pdf Google Scholar
Donovan, S. K. & Paul, C. R. C. 1982. Lower Cambrian echinoderm plates from Comley, Shropshire, England. Geological Magazine 119, 611–14.Google Scholar
Dzik, J. & Orłowski, S. 1993. The Late Cambrian eocrinoid Cambrocrinus . Acta Palaeontologica Polonica 38, 2134.Google Scholar
Friedrich, W. P. 1993. Systematik und Funktionsmorphologie mittelkambrischer Cincta (Carpoidea, Echinodermata). Beringeria 7, 1190.Google Scholar
Friedrich, W. P. 1995. Neue Nachweise mittelkambrischer Cincta (Carpoidea, Echinodermata) aus Marokko, Sardinien und Süd-Wales. Beringeria, Special Issue 2, 255–69Google Scholar
Jefferies, R. P. S., Lewis, M. & Donovan, S. K. 1987. Protocystites menevensis – a stem-group chordate (Cornuta) from the Middle Cambrian of South Wales. Palaeontology 30, 429–84.Google Scholar
Jell, P. A., Burrett, C. F. & Banks, M. R. 1985. Cambrian and Ordovician echinoderms from eastern Australia. Alcheringa 9, 183208.Google Scholar
Klein, J. T. 1734. Naturalis Dispositio Echinodermatum. Accessit Lucubratiuncula de Aculeis Echinorum Marinorum, cum Spicilegio de Belemnitis. Gedani: Schreiber, 79 pp.Google Scholar
Landing, E. 1996. Avalon-insular continent by the latest Precambrian. In Avalonian and Related Peri-Gondwanan Terranes of the Circum-North Atlantic (eds by Nance, R. D. & Thompson, M.), pp. 2764. Geological Society of America, Special Paper 304.Google Scholar
Landing, E. 2005. Early Paleozoic Avalon–Gondwana unity: an obituary – Response to ‘Palaeontological Evidence Bearing on Global Ordovician–Silurian Continental Reconstructions’ by R. R. Fortey and L. R. M. Cocks. Earth-Science Reviews 69, 169–75.CrossRefGoogle Scholar
Lefebvre, B. 2007. Early Palaeozoic palaeobiogeography and palaeoecology of stylophoran echinoderms. Palaeogeography, Palaeoclimatology, Palaeoecology 245, 156–99.Google Scholar
McKerrow, W. S., Scotese, C. R. & Brasier, M. D. 1992. Early Cambrian continental reconstructions. Journal of the Geological Society, London 149, 599606.Google Scholar
McKie, T. & Donovan, S. K. 1992. Lower Cambrian echinoderm ossicles from the Fucoid Beds, northwest Scotland. Scottish Journal of Geology 28, 4953.CrossRefGoogle Scholar
Orłowski, S. 1968. Upper Cambrian fauna of the Holy Cross Mts. Acta Geologica Polonica 18, 257–91.Google Scholar
Rahman, I. A., Zamora, S. & Geyer, G. 2010. The oldest stylophoran echinoderm: a new Ceratocystis from the Middle Cambrian of Germany. Paläontologische Zeitschrift 84, 227–37.Google Scholar
Robison, R. A. & Sprinkle, J. 1969. Ctenocystoidea: new class of primitive echinoderms. Science 166, 1512–14.Google Scholar
Rozhnov, S. V. 2006. Carpozoan echinoderms from the Middle Cambrian (Mayaktakh Formation) of Siberia (lower reaches of the Lena river). Paleontological Journal 40, 266–75.Google Scholar
Rushton, A. W. A. 1982. The biostratigraphy and correlation of the Merioneth-Tremadoc Series boundary in North Wales. In The Cambrian-Ordovician Boundary: Sections, Fossils Distributions, and Correlations (eds Basset, M. G. & Dean, W. T.), pp. 4159. National Museum of Wales, Geological Series no. 3.Google Scholar
Rushton, A. W. A. 2011. Chronostratigraphical subdivisions of the Cambrian period. In A Revised Correlation of the Cambrian Rocks in the British Isles (eds Rushton, A. W. A., Brück, P. M., Molyneux, S. G., Williams, M. & Woodcock, N. H.), pp. 35. The Geological Society, Special Report no. 25.Google Scholar
Smith, A. B. 1988. Patterns of diversification and extinction in Early Palaeozoic echinoderms. Palaeontology 31, 799828.Google Scholar
Smith, A. B. & Zamora, S. 2009. Rooting phylogenies of problematic fossil taxa; a case study using cinctans (stem-group echinoderms). Palaeontology 52, 803–21.Google Scholar
Sprinkle, J. 1973. Morphology and Evolution of Blastozoan Echinoderms. Harvard University Museum of Comparative Zoology, Special Publication, 283 pp.Google Scholar
Sumrall, C. D., Sprinkle, J. & Guensburg, T. E. 1997. Systematics and paleoecology of Late Cambrian echinoderms from the western United States. Journal of Paleontology 71, 1091–109.Google Scholar
Ubaghs, G. 1987. Echinodermes nouveaux du Cambrien moyen de la Montagne Noire (France). Annales de Paléontologie 73, 127.Google Scholar
Ubaghs, G. 1999. Echinodermes nouveaux du Cambrien supérieur de la Montagne Noire. Geobios 31, 809–29.Google Scholar
Yakovlev, N. N. 1956. Pervaja nachodka morskoj lilii v kembrii SSSR (First find of crinoids in the Cambrian of SSSR.). Doklady Akademii Nauk SSSR 108, 726–7.Google Scholar
Zamora, S. & Álvaro, J. J. 2010. Testing for a decline in diversity prior to extinction: Languedocian (latest Mid-Cambrian) distribution of Cinctans (Echinodermata) in the Iberian Chains, NE Spain. Palaeontology 53, 1349–68.CrossRefGoogle Scholar
Zamora, S., Lefebvre, B., Álvaro, J. J., Clausen, S., Elicki, O., Fatka, O., Jell, P., Kouchinsky, A., Lin, J-P., Nardin, E., Parsley, R., Rozhnov, S., Sprinkle, J., Sumrall, C. D., Vizcaïno, D. & Smith, A. B. In press. Cambrian echinoderm diversity and palaeobiogeography. In Early Palaeozoic Palaeobiogeography and Palaeogeography (eds Harper, D. & Servais, T.). Geological Society of London, Special Publication.Google Scholar