Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T00:45:36.347Z Has data issue: false hasContentIssue false

Geochemical and Sr–Nd isotopic constraints on the petrogenesis and geodynamic significance of the Jebilet magmatism (Variscan Belt, Morocco)

Published online by Cambridge University Press:  20 September 2013

ABDERRAHIM ESSAIFI*
Affiliation:
Geology Department, Cadi Ayyad University, B.P. 2390, Marrakech 40000, Morocco
SCOTT SAMSON
Affiliation:
Department of Earth Sciences, Syracuse University, Syracuse, NY 13244, USA
KATHRYN GOODENOUGH
Affiliation:
British Geological Survey, Murchison House, West Mains Road, Edinburgh EH9 3LA, UK
*
Author for correspondence: essaifi@uca.ma

Abstract

In the Variscan fold belt of Morocco, the Jebilet massif is characterized by Palaeozoic metasedimentary rocks intruded by syntectonic magmatism that includes an ultramafic–granitoid bimodal association and peraluminous granodiorites emplaced c. 330 Ma, intruded by younger leucogranites c. 300 Ma. The mafic–ultramafic rocks belong to a tholeiitic series, and display chemical and isotopic signatures consistent with mixing between mantle-derived and crust-derived magmas or assimilation and fractional crystallization. The granites within the bimodal association are mainly metaluminous to weakly peraluminous microgranites that show characteristics of A2-type granites. The peraluminous, calc-alkaline series consists mainly of cordierite-bearing granodiorites enclosing magmatic microgranular enclaves and pelitic xenoliths. Detailed element and isotope data suggest that the alkaline and the peraluminous granitoids were formed in the shallow crust (<30 km) by partial melting of tonalitic sources at high temperatures (up to 900°C) and by partial melting of metasedimentary protoliths at relatively low temperatures (c. 750°C), respectively. Mixing between the coeval mantle-derived and crust-derived magmas contributed to the large variation of initial εNd values and initial Sr isotopic ratios observed in the granitoids. Further contamination occurred by wall-rock assimilation during ascent of the granodioritic plutons to the upper crust. The ultramafic–granitoid association has been intruded by leucogranites that have high initial Sr isotopic ratios and low initial εNd values, indicating a purely crustal origin. The heating events that caused emplacement of the Jebilet magmatism are related to cessation of continental subduction and convective erosion/thinning of the lithospheric mantle during plate convergence.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarab, E. M. & Beauchamp, J. 1987. Le magmatisme carbonifère pré-orogénique des Jebilet centrales (Maroc). Précisions pétrographiques et sédimentaires. Implications géodynamiques. Comptes Rendus de l'Académie des Sciences, Paris 304, 169–74.Google Scholar
Aghzer, A. M. & Arenas, R. 1998. Evolution métamorphique des métapélites du Massif hercynien des Rehamna (Maroc): implications tectonothermales. Journal of African Earth Sciences 27, 87106.CrossRefGoogle Scholar
Ajaji, T., Weis, D., Giret, A. & Bouabdellah, M. 1998. Coeval potassic and sodic calc-alkaline series in the postcollisional Variscan Tanncherfi intrusive complex, north-eastern Morocco: Geochemical, isotopic and geochronological evidence. Lithos 45, 371–93.Google Scholar
Ayers, J. 1998. Trace element modelling of aqueous fluid–peridotite interaction in the mantle wedge of subduction zones. Contributions to Mineralogy and Petrology 132, 390404.Google Scholar
Barbarin, B. 1996. Genesis of the two main types of peraluminous granitoids. Geology 24, 295–98.Google Scholar
Barker, F., Wones, D. R., Sharp, W. N. & Desborough, G. A. 1975. The Pikes Peak Batholith, Colorado Front Range, and a model for the origin of the gabbro-anorthosite-syenite potassic granite suite. Precambrian Research 2, 97160.Google Scholar
Barrat, J. A., Keller, F., Amossé, J., Taylor, R. N., Nesbitt, R. W. & Hirata, T. 1996. Determination of rare earth elements in sixteen silicate reference samples by ICP-MS after Tm addition and ion exchange separation. Geostandards Newsletter 20, 133–40.CrossRefGoogle Scholar
Baudin, T., Chevremont, P., Razin, P., Thieblemont, D., Rachdi, H., Roger, J., Benhaourch, R. & Winckel, A. 2001. Carte Géologique du Maroc au 1/50 000. Feuille d'Oulmès. Notes et Mémoires Service Géologique Maroc 410 bis, 177.Google Scholar
Baudin, T., Chevremont, P., Razin, P., Youbi, N., Andries, D., Hoepffner, C., Thieblemont, D., Chihani, E. M. & Tegyey, M. 2002. Carte géologique du Maroc au 1/50 000, feuille de Skhour des Rehamna, Mémoire explicatif. Notes et Mémoires Service Géologique Maroc 435, 1114.Google Scholar
Beard, J. S. & Lofgren, G. E. 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. Journal of Petrology 32, 365401.Google Scholar
Beauchamp, J. 1984. Le carbonifére inférieur des Jebilet et de l'Atlas de Marrakech (Maroc): migration et comblement d'un bassin marin. Bulletin de la Société Géologique de France 7, 1025–32.Google Scholar
Beauchamp, J., Izart, A. & Piqué, A. 1991. Les bassins d'avant pays de la chaîne hercynienne au Carbonifère inférieur. Canadian Journal of Earth Sciences 28, 2024–41.Google Scholar
Bédard, J. 1990. Enclaves from the A-Type Granite of the Mégantic Complex, White Mountain Magma Series: clues to Granite Magma genesis. Journal of Geophysical Rsearch 95, 17797–819.Google Scholar
Belkabir, A., Marcoux, E., Gibson, H., Lentz, D. & Rziki, S. 2008. Geology and wall rock alteration at the Hercynian Draa Sfar Zn–Pb–Cu massive sulphide deposit, Morocco. Ore Geology Reviews 33, 2306.Google Scholar
Ben Abbou, M., Soula, J. C., Brusset, S., Roddaz, M., Ntarmouchant, A., Driouch, Y., Christophoul, F., Bouabdelli, M., Majesté-Menjoulas, C., Béziat, D., Debat, P. & Déramond, J. 2001. Contrôle tectonique de la sédimentation dans le système de bassins d'avant-pays de la Meseta marocaine. Comptes Rendus de l'Académie des Sciences, Paris 332, 703–9.Google Scholar
Bernard-Griffiths, J., Peucat, J. J., Sheppard, S. M. F. & Vidal, P. 1985. Petrogenesis of Hercynian leucogranites from the southern Armorican massif: contribution of REE and isotopic Sr, Nd, Pb and O geochemical data to the study of source rock characteristics and ages. Earth and Planetary Science Letters 74, 235–50.Google Scholar
Bernardin, C., Cornée, J. J., Corsini, M., Mayol, S., Muller, J. & Tayebi, M. 1988. Variations d'épaisseur du Cambrien moyen en Meseta marocaine occidentale: signification géodynamique des données de surface et de subsurface. Canadian Journal of Earth Sciences 25, 2104–17.Google Scholar
Bonin, B. 1996. A-type granite ring complexes: mantle origin through crustal filters and the anorthosite–rapakivi magmatism connection. In Petrology and Geochemistry of Magmatic Suites of Rocks in Continental and Oceanic Crusts. A Volume Dedicated to Professor Jean Michot (ed Demaiffe, D.), pp. 201–18. Université Libre de Bruxelles, Royal Museum for Central Africa, Tervuren.Google Scholar
Bordonaro, M., Gaillet, J. L. & Michard, A. 1979. Le géosynclinal carbonifère sud-mésetien dans les Jebilet (Maroc): une corrélation avec la province pyriteuse du Sud de l'Espagne. Comptes Rendus de l'Académie des Sciences, Paris 288, 1371–4.Google Scholar
Bouloton, J. 1992. Mise en évidence de cordiérite héritée des terrains traversés dans le pluton granitique des Oulad Ouaslam (Jebilet, Maroc). Canadian Journal of Earth Sciences 29, 658–68.Google Scholar
Bouloton, J. & Gasquet, D. 1995. Melting and undercooled crystallisation of felsic xenoliths from minor intrusions (Jebilet massif, Morocco). Lithos 35, 201–19.Google Scholar
Boummane, M. H. & Olivier, Ph. 2007. The Oulad Ouaslam Variscan granitic pluton (Jebilet Massif, Southwestern Moroccan Meseta): a forcibly emplaced laccolithic intrusion characterized by its magnetic and magmatic fabrics. Journal of African Earth Sciences 47, 4961.Google Scholar
Bussy, F., Hernandez, J. & von Raumer, J. 2000. Bimodal magmatism as a consequence of the post-collisional readjustment of the thickened Variscan continental lithosphere (Aiguilles Rouges - Mont Blanc Massifs, Western Alps). Transactions of the Royal Society of Edinburgh: Earth Sciences 91, 221–33.Google Scholar
Chalot-Prat, F. 1995. Genesis of rhyolitic ignimbrites and lavas from distinct sources at a deep crustal level: field, petrographic, chemical and isotopic-Sr, Nd constraints in the Tazekka volcanic complex, Eastern Morocco. Lithos 36, 2949.Google Scholar
Chappell, B. W. & White, A. J. R. 1974. Two contrasting granite types. Pacific Geology 8, 173–4.Google Scholar
Clemens, J. D. 1986. Origin of an A-type granite: experimental constraints. American Mineralogist 71, 317–24.Google Scholar
Collins, W. J., Beams, S. D., White, A. J. R. & Chappell, B. W. 1982. Nature and origin of A-type granites with particular reference to Southern Australia. Contributions to Mineralogy and Petrology 80, 189200.CrossRefGoogle Scholar
Creaser, R. A., Price, R. C. & Wormald, R. J. 1991. A-type granites revisited: assessment of a residual-source model. Geology 19, 163–6.Google Scholar
Davies, J. H. & von Blanckenburg, F. 1995. Slab break-off: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth and Planetary Science Letters 129, 85102.Google Scholar
DePaolo, D. 1981 a. Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature 291, 193–6.CrossRefGoogle Scholar
DePaolo, D. J. 1981 b. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters 53, 189202.Google Scholar
Diot, H. & Bouchez, J. L. 1989. Les granitoïdes hercyniens de la haute Moulouya: leur structure primaire déduite de l'ASM. Indications sur leur mise en place. Bulletin de la Société Géologique de France 4, 705–71.Google Scholar
Dostal, J., Keppie, J. D., Hamilton, M. A., Aarab, E. M., Lefort, J. P. & Murphy, J. B. 2005. Crustal xenoliths in Triassic lamprophyre dykes in western Morocco: tectonic implications for Rheic Ocean suture. Geological Magazine 142, 159–72.Google Scholar
Eby, N. G. 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20, 641–4.Google Scholar
El Amrani El Hassani, I. E. 1996. Petrogenèse des granitoïdes peralumineux des Jebilet centrales (Maroc): approche par l'étude des enclaves. Bulletin Institut Scientifique Rabat 20, 123.Google Scholar
El Hadi, H., Simancas Cabrera, F., Tahiri, A., González Lodeiro, F., Azor Pérez, A. & Martínez Poyatos, D. J. 2006. Comparative review of the Variscan granitoids of Morocco and Iberia: proposal of a broad zonation. Geodinamica Acta 19, 103–16.Google Scholar
England, P. C. & Thompson, A. 1986. Some thermal and tectonic models for crustal melting in continental collision zones. In Collision Tectonics (eds Coward, M. P. & Ries, A. C.), pp. 8394. Geological Society of London, Special Publication no. 19.Google Scholar
Essaifi, A. 1995. Relations entre magmatisme-déformation et altération hydrothermale: l'exemple des Jebilet centrales (Hercynien, Maroc). Mémoires Géosciences Rennes 66, 1340.Google Scholar
Essaifi, A., Capdevila, R., Fourcade, S., Lagarde, J. L., Ballèvre, M. & Marignac, C. 2004 a. Hydrothermal alteration, fluid flow and volume change in shear zones: the layered mafic-ultramafic Kettara intrusion (Jebilet massif, Variscan belt, Morocco). Journal of Metamorphic Geology 22, 2543.Google Scholar
Essaifi, A., Capdevila, R. & Lagarde, J. L. 2004 b. Metasomatic trondhjemites and tonalites: examples in central Jebilet Variscan (Morocco). Journal of African Earth Sciences 39, 369–74.Google Scholar
Essaifi, A. & Hibti, M. 2008. The hydrothermal system of Central Jebilet (Variscan Belt, Morocco): a genetic association between bimodal plutonism and massive sulphide deposits. Journal of African Earth Sciences 50,188203.CrossRefGoogle Scholar
Essaifi, A., Lagarde, J. L. & Capdevila, R. 2001. Deformation and displacement from shear zone patterns in the Variscan upper crust, Jebilet, Morocco. Journal of African Earth Sciences 32, 335–50.Google Scholar
Essaifi, A., Potrel, A., Capdevila, R. & Lagarde, J. L. 2003. U-Pb dating: emplacement age of the bimodal magmatism of central Jebilet (Variscan Belt, Morocco). Geodynamic implications. Comptes Rendus Géoscience 335, 193203.Google Scholar
Evensen, N. M., Hamilton, P. J. & O'Nions, R. K. 1978. Rare-earth abundances in chondritic meteorites. Geochimica Cosmochimica Acta 42, 1199–212.Google Scholar
Falloon, T. J., Green, D. H., Hatton, C. J. & Harris, K. L. 1988. Anhydrous partial melting of a fertile and depleted peridotite from 2 to 30 kb and application to basalt petrogenesis. Journal of Petrology 29, 1257–82.CrossRefGoogle Scholar
Floyd, P. A. 1991. Rhenohercynian sandstone chemistry. In Developments in Sedimentary Provenance Studies (eds Morton, A. C., Todd, S. P. & Haughton, P. D. W.), pp. 173–88. Geological Society of London, Special Publication no. 57.Google Scholar
Fourcade, S., Capdevila, R., Ouabadi, A. & Martineau, F. 2001. The origin and geodynamic significance of the Alpine cordierite-bearing granitoids of northern Algeria. A combined petrological, mineralogical, geochemical and isotopic (O, H, Sr, Nd) study. Lithos 57, 187216.Google Scholar
Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J. & Frost, C. D. 2001. A geochemical classification for granitic rocks. Journal of Petrology 42, 2033–48.Google Scholar
Gasquet, D., Leterrier, J., Mrini, Z. & Vidal, P. 1992. Petrogenesis of the Variscan Tichka Plutonic Complex, Western High Atlas, Morocco: trace element and Rb–Sr and Sm–Nd isotopic constraints. Earth and Planetary Science Letters 108, 2944.Google Scholar
Gasquet, D., Stussi, J. M. & Nachit, H. 1996. Les granitoïdes hercyniens du Maroc dans le cadre de l'évolution géodynamique régionale. Bulletin de la Société Géologique de France 167, 517–28.Google Scholar
Harris, N. B. W., Pearce, J. A. & Tindle, A. G. 1986. Geochemical characterization of collision-zone magmatism. In Collision Tectonics (eds Coward, M. P. & Ries, A. C.), pp. 6781. Geological Society of London, Special Publication no. 19.Google Scholar
Helz, R. T. 1976. Phase relations of basalts in their melting ranges at P = 5 kb. Part II. Melt compositions. Journal of Petrology 17, 139–93.Google Scholar
Hoepffner, C., Soulaimani, A. & Piqué, A. 2005. The Moroccan hercynides. Journal of African Earth Sciences 43, 144–65.Google Scholar
Holland, T. & Blundy, J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole–plagioclase thermometry. Contributions to Mineralogy and Petrology 116, 433–47.Google Scholar
Holloway, J. R. & Burnham, C. W. 1972. Melting relations of basalt with equilibrium water pressure less than total pressure. Journal of Petrology 13, 129.Google Scholar
Houseman, G. A., McKenzie, D. P. & Molnar, P. 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. Journal of Geophysical Research 86, 6115–32.Google Scholar
Huang, H. Q., Li, X. H., Li, W. X. & Li, Z. X. 2011. Formation of high δ18O fayalite-bearing A-type granite by high temperature melting of granulitic metasedimentary rocks, southern China. Geology 39, 903–6.Google Scholar
Huvelin, P. 1977. Etude géologique et gîtologique du massif hercynien des Jebilet (Maroc occidental). Notes et Mémoires Service Géologique Maroc 232 bis, 1307.Google Scholar
Jiang, Y. H., Zhao, P., Zhou, Q., Liao, S. Y. & Gin, G. D. 2009. Middle to late Jurassic felsic and mafic magmatism in southern Hunan province, southeast China. Implications for continental arc to rifting. Lithos 107, 185204.Google Scholar
Keppler, H. 1996. Constraints from partitioning experiments on the compositions of subduction-zone fluids. Nature 380, 237–40.Google Scholar
Kerr, A. & Fryer, B. J. 1993. Nd isotope evidence for crust-mantle interaction in the generation of A-type granitoid suites in Labrador, Canada. Chemical Geology 104, 439–60.Google Scholar
Lagarde, J. L. 1989. Granites tardi carbonifères et déformation crustale: l'exemple de la meseta marocaine. Mémoires et Documents du Centre Armoricain d'Etude Structurale des Socles 26, 1342.Google Scholar
Lagarde, J. L., Aït Omar, S. & Roddaz, B. 1990. Structural characteristics of syntectonic plutons with special reference to late carboniferous plutons from Morocco. Journal of Structural Geology 12, 805–21.Google Scholar
Lagarde, J. L., Capdevila, R. & Fourcade, S. 1992. Granites et collision continentale: l'exemple des granitoïdes carbonifères dans la chaîne hercynienne ouest-européenne. Bulletin de la Société Géologique de France 163, 597610.Google Scholar
Lagarde, J. L. & Choukroune, P. 1982. Cisaillement ductile et granitoïdes syntectoniques: l'exemple du massif hercynien des Jebilet (Maroc). Bulletin de la Société Géologique de France 7, 299307.Google Scholar
Lagarde, J. L. & Michard, A. 1986. Stretching normal to the regional thrust displacement in a thrust-wrench shear zone, Rehamna massif, Morocco. Journal of Structural Geology 8, 483–92.Google Scholar
Lamb, S., Hoke, L., Kennan, L. & Dewey, J. 1997. Cenozoic evolution of the central Andes in Bolivia and northern Chile. In Orogeny Through Time (eds Burg, J. P. & Ford, M.), pp. 237–64. Geological Society of London, Special Publication no. 121.Google Scholar
Landenberger, B. & Collins, W. J. 1996. Derivation of A-type granites from a dehydrated charnokitic lower crust: evidence from the Chaelundi complex, Eastern Australia. Journal of Petrology 37, 145–70.Google Scholar
Le Corre, C. & Bouloton, J. 1987. Un modèle de ‘structure en fleur’ associant décrochement et convergence: Les Jebilet centro-occidentales (Maroc hercynien). Comptes Rendus de l'Académie des Sciences, Paris 13, 751–5.Google Scholar
Le Corre, C. & Saquaque, A. 1987. Comportement d'un système pluton-encaissant dans un champ de déformation régional: le granite de Bramram (Jebilet, Maroc hercynien). Bulletin de la Société Géologique de France 4, 665–73.Google Scholar
Leat, P. T., Jackson, S. E., Thorpe, R. S. & Stillman, C. J. 1986. Geochemistry of bimodal basalt-subalkaline/peralkaline rhyolite provinces within the Southern British Caledonides. Journal of the Geological Society of London 143, 259–73.Google Scholar
Lindsley, D. H. & Andersen, D. J. 1983. A two pyroxene thermometer. Proceedings of the 13th Lunar and Planetary Science Conference, Part 2. Journal of Geophysical Research 8, supplement A, 887906.Google Scholar
Litvinovsky, B. A., Jahn, B. M., Zanvilevich, A. N., Saunders, A., Poulain, S., Kuzmin, D. V., Reichow, M. K. & Titov, A. V. 2002. Petrogenesis of syenite–granite suites from the Bryansky Complex (Transbaikalia, Russia): implications for the origin of A-type granitoid magmas. Chemical Geology 189, 105–33.Google Scholar
Loosveld, R. J. H. & Etheridge, M. A. 1990. A model for low-pressure metamorphism during crustal thickening. Journal of Metamorphic Geology 8, 257–67.CrossRefGoogle Scholar
Mahéo, G., Guillot, J., Blichert-Toft, Y., Rolland, Y. & Pecher, A. 2002. A slab break-off model for the Neogene thermal evolution of South Karakorum and South Tibet. Earth and Planetary Science Letters 195, 4558.Google Scholar
Mahmood, A. & Bennani, A. 1984. S-type characteristics of the Hercynian granitoids of the Central Paleozoic massif, Morocco. Geological Magazine 121, 301–9.Google Scholar
Mayol, S. & Muller, J. 1985. Mise en évidence d'une unité allochtone hercynienne précoce (antéschisteuse) dans les Jebilet occidentales (Maroc). Etude de structuration de la zone de contact. Comptes Rendus de l'Académie des Sciences, Paris 300, 369–72.Google Scholar
McBirney, A. 1989. The skaergaard layered series: I. structure and average compositions. Journal of Petrology 30, 363–97.Google Scholar
Michard, A. 1976. Eléments de géologie marocaine. Notes et Mémoires Service Géologique Maroc 252, 1458.Google Scholar
Michard, A., Soulaimani, A., Hoepffner, C., Ouanaimi, H., Baidder, L., Rjimati, E. C. & Saddiqi, O. 2010. The South-Western branch of the Variscan Belt: evidence from Morocco. Tectonophysics 492, 124.CrossRefGoogle Scholar
Mingram, B., Trumbull, R. B., Littman, S. & Gerstenberger, H. 2000. A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia: evidence for mixing of crust and mantle-derived components. Lithos 54, 122.Google Scholar
Mitjavila, J., Marti, J. & Soriano, C. 1997. Magmatic evolution and tectonic setting of the Iberian Pyrite Belt volcanism. Journal of Petrology 38, 727–55.Google Scholar
Miyashiro, A. 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science 274, 321–55.Google Scholar
Moreno, C., Sáez, R., González, F., Almodóvar, G., Toscano, M., Playford, G., Alansari, A., Rziki, S. & Bajddi, A. 2008. Age and depositional environment of the Draa Sfar massive sulphide deposit, Morocco. Mineralium Deposita 43, 891911.CrossRefGoogle Scholar
Mrini, Z., Rafi, A., Duthou, J. L. & Vidal, P. 1992. Chronologie Rb-Sr des granitoïdes hercyniens du Maroc: conséquences. Bulletin de la Société Géologique de France 163, 281–91.Google Scholar
Mushkin, A., Navon, O., Halicz, L., Hartmann, G. & Stein, M. 2003. The petrogenesis of A-type magmas from the Amram Massif, southern Israel. Journal of Petrology 44, 815–32.Google Scholar
Nelson, K. D. 1992. Are crustal thickness variations in old mountain belts like the Appalachians a consequence of lithospheric delamination? Geology 20, 498502.Google Scholar
Patiño Douce, A. E. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology 25, 743–6.Google Scholar
Pearce, J. A. 1983. The role of sub-continental lithosphere in magma genesis at destructive plate margins. In Continental Basalts and Mantle Xenoliths (eds Hawkesworth, C. J. & Norry, M. J.), pp. 230–49. Nantwich: Shiva.Google Scholar
Pearce, J. A., Harris, N. B. W. & Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 923–56.CrossRefGoogle Scholar
Piqué, A., Bossière, G., Bouillin, J. P., Challouan, A. & Hoepffner, C. 1993. Southern margin of the variscan belt: the north-western Gondwana mobile zone (Eastern Morocco and Northern Algeria). Geologische Rundschau 82, 432–9.CrossRefGoogle Scholar
Piqué, A., Jeannette, D. & Michard, A. 1980. The western meseta shear zone, a major and permanent feature of the Hercynian belt in Morocco. Journal of Structural Geology 2, 397410.Google Scholar
Piqué, A. & Michard, A. 1989. Moroccan hercynides: a synopsis. The Palaeozoic sedimentary and tectonic evolution at the northern margin of west Africa. American Journal of Science 289, 286330.Google Scholar
Playford, G., Gonzalez, F., Moreno, C. & Alansari, A. 2008. Palynostratigraphy of the Sarhlef Series (Mississippian), Jebilet Massif, Morocco. Micropaleontology 54, 89124.Google Scholar
Roddaz, M., Brusset, S., Soula, J. C., Beziat, D., Benabbou, M., Debat, P., Driouch, Y., Christophoul, F., Ntarmouchant, A. & Deramond, J. 2002. Foreland basin magmatism in the western Moroccan Meseta and geodynamic inferences. Tectonics 21, 1043–65.Google Scholar
Rollinson, H. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Harlow: Longman Scientific & Technical, 352 pp.Google Scholar
Samson, S. D., Hibbard, J. P. & Wortman, G. L. 1995. Nd isotopic evidence for juvenile crust in the Carolina terrane, southern Appalachians. Contributions to Mineralogy and Petrology 121, 171–84.CrossRefGoogle Scholar
Seyferth, M. & Henk, A. 2004. Syn-convergent exhumation and lateral extrusion in continental collision zones: insights from three-dimensional numerical models. Tectonophysics 382, 129.CrossRefGoogle Scholar
Skjerlie, K. P. & Johnston, A. D. 1993. Fluid absent melting behavior of an F-rich tonalitic gneiss at mid-crustal pressures: implications for the generation of anorogenic granites. Journal of Petrology 34, 785815.Google Scholar
Spulber, S. D. & Rutherford, M. J. 1983. The origin of rhyolite and plagiogranite in oceanic crust: an experimental study. Journal of Petrology 24, 125.Google Scholar
Sun, S. & McDonough, W. F. 1989. Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Taylor, S. R. & McLennan, S. M. 1995. The geochemical evolution of the continental crust. Reviews of Geophysics 33, 241–65.Google Scholar
Thompson, R. N., Dickin, A. P., Gibson, I. L. & Morrison, M. A. 1982. Elemental fingerprints of isotopic contamination of Hebridean Palaeocene mantle-derived magmas by Archaean sial. Contributions to Mineralogy and Petrology 79, 159–68.Google Scholar
Thorpe, R. S., Leat, P. T., Mann, A. C., Howells, M. F., Reedman, A. J. & Campbell, D. G. 1993. Magmatic evolution of the Ordovician Snowdon volcanic centre, North Wales (UK). Journal of Petrology 34, 711–4.Google Scholar
Totten, M. W., Hanan, M. A. & Weaver, B. L. 2000. Beyond whole-rock geochemistry of shales: the importance of assessing mineralogic controls for revealing tectonic discriminants of multiple sediment sources for the Ouachita Mountain flysch deposits. Geological Society of America Bulletin 112, 1012–22.Google Scholar
Turner, S., Foden, J. D. & Morrisson, R. S. 1992. Derivation of some A-type magmas by fractionation of basaltic magmas: an example from the Pathdaway ridge. South Australia. Lithos 28, 151–79.Google Scholar
Turner, S., Platt, J. P., George, R. M. M., Kelly, S. P., Pearson, D. G. & Nowell, G. M. 1999. Magmatism associated with orogenic collapse of the Betic-Alboran Domain, SE Spain. Journal of Petrology 40, 1011–36.CrossRefGoogle Scholar
Vogel, T. A., Williams, E. R., Preston, J. K. & Walker, B. M. 1976. Origin of the late Palaeozoic plutonic massifs in Morocco. Geological Society of America Bulletin 87, 1753–62.2.0.CO;2>CrossRefGoogle Scholar
von Raumer, J. F., Bussy, F. & Stampfli, G. M. 2009. The Variscan evolution in the External Massifs of the Alps and place in their Variscan framework. Comptes Rendus Geosciences 341, 239–52.Google Scholar
von Raumer, J. F. & Stampfli, G. M. 2008. The birth of the Rheic Ocean: early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics 46, 920.Google Scholar
Wang, K. L., Chung, S. L., O'Reilly, S. Y., Sun, S. S., Shinjo, R. & Chen, C. H. 2004. Geochemical constraints for the genesis of postcollisional magmatism and the geodynamic evolution of the northern Taiwan region. Journal of Petrology 45, 9751011.Google Scholar
Watson, E. B. & Harrison, T. M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters 64, 295304.Google Scholar
Whalen, J. B., Currie, K. L. & Chappell, B. W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology 95, 407–19.Google Scholar
Whalen, J. B., McNicoll, V. J., van Staal, C. R., Lissenberg, C. J., Longstaffe, F. J., Genner, G. A. & van Breeman, O. 2006. Spatial, temporal and geochemical characteristics of Silurian collision-zone magmatism, Newfoundland Appalachians: an example of a rapidly evolving magmatic system related to slab break-off. Lithos 89, 377404.Google Scholar
Wickham, S. M., Alberts, A. D., Zanvilevich, A. N., Litvinovsky, B. A., Bindeman, I. N. & Schauble, E. A. 1996. A stable isotope study of anorogenic magmatism in East Central Asia. Journal of Petrology 37, 1063–95.Google Scholar
Wilson, M. 1989. Igneous Petrogenesis. London: Unwin Hyman, 456 pp.Google Scholar
Winchester, J. A. & Floyd, P. A. 1976. Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks. Earth and Planetary Science Letters 28, 459–69.Google Scholar
Wood, D. A. 1980. The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the BritishTertiary volcanic province. Earth and Planetary Science Letters 50, 1130.Google Scholar
Yang, J. H., Wu, F. Y., Chung, S. L., Wilde, S. A. & Chu, M. F. 2006. A hybrid origin for the Qianshan A-type granite, Northeast China: geochemical and Sr–Nd–Hf isotopic evidence. Lithos 89, 89106.Google Scholar