Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T01:16:58.577Z Has data issue: false hasContentIssue false

Gravity modelling of the lherzolite body at Lers (French Pyrenees); some regional implications

Published online by Cambridge University Press:  01 May 2009

Helen J. Anderson
Affiliation:
Department of Earth Sciences, University of Cambridge, Bullard Laboratories, Madingley Rise, Madingley Road, Cambridge CB3 0EZ, U.K.

Abstract

Lherzolites outcrop throughout the North Pyrenean Zone of the Pyrenees and are everywhere associated with metamorphosed carbonates. It has been suggested that heat from the cooling of the lherzolites was responsible for the high temperature metamorphism of the carbonates. A gravity survey reported here shows that the volume of the lherzolite body at Lers is approximately 0.8 km3. The maximum volume of carbonates that such a body could metamorphose is 3.2 km3. This latter value is so much less than the volume of carbonates inferred from field mapping that the lherzolite body cannot have been the sole source of heat for metamorphism of the carbonates.

It has been suggested from seismic data that there is a step in the Moho beneath the North Pyrenean Fault in the central Pyrenees. Gravity anomalies reported here show that either the step is less than 10 km high or that the density contrast is very low at the base of the crust in the Pyrenees.

Type
Articles
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albarède, F. & Michard-Vitrac, A. 1978. Age and significance of the north Pyrenean metamorphism. Earth and Planetary Science Letters 40, 327–32.CrossRefGoogle Scholar
Avé Lallemant, H. G. 1967. Structural and petrofabric analysis of an ‘Alpine type’ peridotite: the lherzolite of the French Pyrenees. Leidse Geologische Mededelingen 42, 157.Google Scholar
Bureau De Recherches Géologiques Et Minières. 1975. Carte gravimétrique de la France. Anomalie de Bouguer, 1:1000000. Orléans: B.R.C.M.Google Scholar
Choukroune, P. 1976. Structure et évolution tectonique de la zone nord-pyrénéenne. Analyse de la déformation dans une portion de chaîne à schistosité sub-verticale. Société Géologique de France, Mémoire 127, 1116.Google Scholar
Choukroune, P. 1980. Comment and Reply on ‘Quenching: An additional model for emplacement of the lherzolite at Lers (French Pyrenees)’. Geology 8, 514–15.2.0.CO;2>CrossRefGoogle Scholar
Coron, S. & Guillaume, A. (1971). Etude gravimétrique sur le Golfe de Gascogne et les Pyrénees. In Histoire Structural du Gascogne (Editions Technip, Paris, 1971), iv 9–1 – iv 9–16.Google Scholar
Daignieres, M., Gallart, J. & Banda, E. 1981. Lateral variation of the crust in the North Pyrenean Zone. Annales de Géophysique 37, 435–56.Google Scholar
Daignieres, M., Gallart, J., Banda, E. & Hirn, A. 1982. Implications of the seismic structure for the orogenic evolution of the Pyrenean Range. Earth and Planetary Science Letters 57, 88100.CrossRefGoogle Scholar
Hatherton, T. & Leopard, A. E. 1964. The densities of New Zealand rocks. New Zealand Journal of Geology and Geophysics 7, 605–14.CrossRefGoogle Scholar
Instituto Geografico Y Catastral. 1972. Avance del mapa gravimetrico de la peninsula Iberica, 1:2000000: Madrid: I.G.C.Google Scholar
Malzac, J. & Rousseau, A. 1982. Gravimétrie des Pyrénees ariegéoises: quelques conséquences structurale. Bulletin Societé Géologique de France 24 (7), no. 4, 739–53.CrossRefGoogle Scholar
Minnigh, L. D., van Calsteren, P. W. C. & den Tex, E. 1980. Quenching: An additional model for the emplacement of the lherzolite at Lers (French Pyrenees). Geology 8, 1821.2.0.CO;2>CrossRefGoogle Scholar
Nettleton, L. L. 1976. Gravity and Magnetics in Oil Prospecting. McGraw-Hill, 464 p.Google Scholar
Ravier, J. 1959. Le métamorphisme des terrains secondaires des Pyrénees. Société Géologique de France, Mémoires 38, 250 p.Google Scholar
Talwani, M. & Ewing, M. 1960. Rapid computation of gravitational attraction of three-dimensional bodies of arbitrary shape. Geophysics 25, 203–25.CrossRefGoogle Scholar