Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T21:20:36.010Z Has data issue: false hasContentIssue false

The Grenville–Sveconorwegian orogen in the high Arctic

Published online by Cambridge University Press:  14 February 2012

HENNING LORENZ*
Affiliation:
Department of Earth Sciences, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden
DAVID G. GEE
Affiliation:
Department of Earth Sciences, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden
ALEXANDER N. LARIONOV
Affiliation:
A. P. Karpinsky Russian Geological Research Institute (VSEGEI), Centre of Isotopic Research, 74, Sredny prospect, 199106, St Petersburg, Russia
JAROSLAW MAJKA
Affiliation:
Department of Earth Sciences, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden
*
Author for correspondence: henning.lorenz@geo.uu.se

Abstract

Throughout the high Arctic, from northern Canada (Pearya) to eastern Greenland, Svalbard, Franz Josef Land, Novaya Zemlya, Taimyr and Severnaya Zemlya and, at lower Arctic latitudes, in the Urals and the Scandinavian Caledonides, there is evidence of the Grenville–Sveconorwegian Orogen. The latest orogenic phase (c. 950 Ma) is well exposed in the Arctic, but only minor Mesoproterozoic fragments of this orogen occur on land. However, detrital zircons in Neoproterozoic and Palaeozoic successions provide unambiguous Mesoproterozoic to earliest Neoproterozoic (c. 950 Ma) signatures. This evidence strongly suggests that the Grenville–Sveconorwegian Orogen continues northwards from type areas in southeastern Canada and southwestern Scandinavia, via the North Atlantic margins to the high Arctic continental shelves. The widespread distribution of late Mesoproterozoic detrital zircons far to the north of the Grenville–Sveconorwegian type areas is usually explained in terms of long-distance transport (thousands of kilometres) of either sediments by river systems from source to sink, or of slices of lithosphere (terranes) moved on major transcurrent faults. Both of these interpretations involve much greater complexity than the hypothesis favoured here, the former involving recycling of the zircons from the strata of initial deposition into those of their final residence and the latter requiring a diversity of microcontinents. Neither explains either the fragmentary evidence for the presence of Grenville–Sveconorwegian terranes in the high Arctic, or the composition of the basement of the continental shelves. The presence of the Grenville–Sveconorwegian Orogen in the Arctic, mainly within the hinterland and margins of the Caledonides and Timanides, has profound implications not only for the reconstructions of the Rodinia supercontinent in early Neoproterozoic time, but also the origin of these Neoproterozoic and Palaeozoic mountain belts.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecht, L. 2000. Early structural and metamorphic evolution of the Scandinavian Caledonides: a study of the eclogite-bearing Seve Nappe Complex at the Arctic Circle, Sweden. Ph.D. thesis, Lund University, Lund, Sweden, 132 pp. Published thesis.Google Scholar
Andersen, T., Griffin, W. L., Jackson, S. E., Knudsen, T.-L. & Pearson, N. J. 2004. Mid-Proterozoic magmatic arc evolution at the southwest margin of the Baltic Shield. Lithos 73, 289318.CrossRefGoogle Scholar
Andréasson, P. G. 1994. The Baltoscandian margin in Neoproterozoic-early Palaeozoic times. Some constraints on terrane derivation and accretion in the Arctic Scandinavian Caledonides. Tectonophysics 231, 132.CrossRefGoogle Scholar
Anfinson, O. A., Leier, A. L., Embry, A. F. & Dewing, K. 2011. Detrital zircon geochronology and provenance of the Neoproterozoic to Late Devonian Franklinian Basin, Canadian Arctic Islands. Geological Society of America Bulletin, published online 30 September 2011. doi: 10.1130/B30503.1 CrossRefGoogle Scholar
Balashov, Y. A., Tebenkov, A. M., Ohta, Y., Larionov, A. N., Sirotkin, A. N., Gannibal, L. F. & Ryungen, G. I. 1995. Grenvillian U-Pb zircon ages of quartz porphyry and rhyolite clasts in a metaconglomerate at Vimsodden, southwestern Spitsbergen. Polar Research 14, 291302.CrossRefGoogle Scholar
Be'eri-Shlevin, Y., Gee, D., Claesson, S., Ladenberger, A., Majka, J., Kirkland, C., Robinson, P. & Frei, D. 2011. Provenance of Neoproterozoic sediments in the Särv nappes (Middle Allochthon) of the Scandinavian Caledonides: LA-ICP-MS and SIMS U-Pb dating of detrital zircons. Precambrian Research 187, 181200.CrossRefGoogle Scholar
Beranek, L. P., Mortensen, J. K., Lane, L. S., Allen, T. L., Fraser, T. A., Hadlari, T. & Zantvoort, W. G. 2010. Detrital zircon geochronology of the western Ellesmerian clastic wedge, northwestern Canada: insights on Arctic tectonics and the evolution of the northern Cordilleran miogeocline. Geological Society of America Bulletin 122, 1899–911.CrossRefGoogle Scholar
Bergström, J. & Gee, D. G. 1985. The Cambrian of Scandinavia. In The Caledonide Orogen – Scandinavia and related areas (eds. Gee, D. G. & Sturt, B. A.), pp. 247–71. Chichester: John Wiley & Sons.Google Scholar
Bezzubtsev, V. V., Malitch, N. S., Markov, F. G. & Pogrebitskij, Y. E. 1983. Geological Map of Mountainous Tajmyr 1:500000. Krasnoyarsk: Ministry of Geology of the USSR.Google Scholar
Bezzubtsev, V. V., Zalyaleyev, R. & Sakovich, A. 1986. Geological Map of Mountainous Tajmyr 1:500 000, Explanatory notes. Krasnoyarsk: Ministry of Geology of the USSR, 177 pp.Google Scholar
Bingen, B., Davis, W. J., Hamilton, M. A., Engvik, A. K., Stein, H. J., Skar, O. & Nordgulen, Ø. 2008. Geochronology of high-grade metamorphism in the Sveconorwegian belt, S. Norway: U-Pb, Th-Pb and Re-Os data. Norwegian Journal of Geology 88, 1342.Google Scholar
Bingen, B., Nordgulen, O. & Viola, G. 2008. A four-phase model for the Sveconorwegian orogeny, SW Scandinavia. Norwegian Journal of Geology 88, 4372.Google Scholar
Birkenmajer, K. 1975. Caledonides of Svalbard and plate tectonics. Bulletin of the Geological Society of Denmark 24, 119.Google Scholar
Bjørnerud, M. 1990. An Upper Proterozoic unconformity in northern Wedel Jarlsberg Land, southwest Spitsbergen: Lithostratigraphy and tectonic implications. Polar Research 8, 127–39.CrossRefGoogle Scholar
Bondarev, V. I., Ershov, Y. P., Andreeva, I. A. & Sobolev, N. N. 1978. Paleogeografiya Novoi Zemli i sopredelnyh raionov v ordovike-devone (Palaeogeography of Novaya Zemlya and adjacent regions during the Ordovician- Devonian). In Tektonika Arktiki. Skladchatyi fundament shel'fovyh sedimentatsionnyh basseinov, pp. 20–4. NIIGA.Google Scholar
Cawood, P. A., Nemchin, A. A., Smith, M. & Loewy, S. 2003. Source of the Dalradian Supergroup constrained by U-Pb dating of detrital zircon and implications for the East Laurentian margin. Journal of the Geological Society, London 160, 231–46.CrossRefGoogle Scholar
Cawood, P. A., Nemchin, A. A., Strachan, R., Prave, T. & Krabbendam, M. 2007. Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia. Journal of the Geological Society, London 164, 257–75.CrossRefGoogle Scholar
Cawood, P. A., Strachan, R., Cutts, K., Kinny, P. D., Hand, M. & Pisarevsky, S. 2010. Neoproterozoic orogeny along the margin of Rodinia: Valhalla orogen, North Atlantic. Geology 38, 99102.CrossRefGoogle Scholar
Cecile, M. P., Harrison, J. C., Kos'ko, M. K. & Parrish, R. R. 1991. Precambrian U–Pb ages of igneous rocks, Wrangel Complex, Wrangel Island, USSR. Canadian Journal of Earth Sciences 28, 1340–8.CrossRefGoogle Scholar
Claesson, S. 1982. Caledonian metamorphism of Proterozoic Seve rocks on Mt. Åreskutan, southern Swedish Caledonides. Geologiska Föreningen i Stockholm. Förhandlingar 103, 291304.CrossRefGoogle Scholar
Claesson, S. 1987. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. Contributions to Mineralogy and Petrology 97, 196204.CrossRefGoogle Scholar
Corfu, F., Svensen, H., Neumann, E.-R., Nakrem, H. A. & Planke, S. 2010. U-Pb and geochemical evidence for a Cryogenian magmatic arc in central Novaya Zemlya, Arctic Russia. Terra Nova 22, 116–24.CrossRefGoogle Scholar
Czerny, J., Majka, J., Gee, D. G., Manecki, A. & Manecki, M. 2010. Torellian Orogeny: evidence of a Late Proterozoic tectonometamorphic event in southwestern Svalbard's Caledonian basement. NGF Abstracts and Proceedings 1, 35–6.Google Scholar
Dahlqvist, P., Gee, D. G., Frei, D. & Ladenberger, A. 2011. Development of the Baltoscandian foreland basin during closure of the Iapetus ocean and Baltica-Laurentia collision. Geological Society of America Abstracts with Programs 43, 432.Google Scholar
Dhuime, B., Bosch, D., Bruguier, O., Caby, R. & Pourtales, S. 2007. Age, provenance and post-deposition metamorphic overprint of detrital zircons from the Nathorst Land group (NE Greenland) – A LA-ICP-MS and SIMS study. Precambrian Research 155, 2446.CrossRefGoogle Scholar
Dibner, V. D. (ed.) 1998. Geology of Franz Josef Land. Oslo: Norsk Polarinstitutt, 190 pp.Google Scholar
Embry, A. F. 1993. Crockerland – The northern source area for the Sverdrup Basin, Canadian Arctic Archipelago. In Arctic Geology and Petroleum Potential (eds. Vorren, T., Bergsager, E., Dahl-Stamnes, O., Holter, E., Johansen, B., Lie, E., & Lund, T.), pp. 205–16. Special Publications 2, Norwegian Petroleum Society.Google Scholar
Embry, A. F. 2000. Counterclockwise rotation of the Arctic Alaska Plate: best available model or untenable hypothesis for the opening of the Amerasia Basin. Polarforschung 68, 247–55.Google Scholar
Falkum, T. & Petersen, J. S. 1980. The Sveconorwegian orogenic belt, a case of late-Proterozoic plate-collision. Geologische Rundschau 69, 622–47.CrossRefGoogle Scholar
Friend, P. F., Harland, W. B., Rogers, D. A., Snape, I. & Thornley, R. S. W. 1997. Late Silurian and Early Devonian stratigraphy and probable strike-slip tectonics in northwestern Spitsbergen. Geological Magazine 134, 459–79.CrossRefGoogle Scholar
Gayer, R. A., Gee, D. G., Harland, W. B., Miller, J. A., Spall, H. R., Wallis, R. H. & Winsnes, T. S. 1966. Radiometric Age Determinations on Rocks From Spitsbergen. Oslo: Norsk Polarinstitutt, 39 pp.Google Scholar
Gayer, R. A., Rice, A. H. N., Roberts, D., Townsend, C. & Welbon, A. 1987. Restoration of the Caledonian Baltoscandian margin from balanced cross-sections: the problem of excess continental crust. Transactions of the Royal Society of Edinburgh: Earth Sciences 78, 197217.CrossRefGoogle Scholar
Gee, D. G. 1972. Late Caledonian (Haakonian) movements in northern Spitsbergen. Norsk Polarinstitutt Årbok 1970, 92101.Google Scholar
Gee, D. G. 1975. A tectonic model for the central part of the Scandinavian Caledonides. American Journal of Science 275A, 468515.Google Scholar
Gee, D. G. 1978. Nappe displacement in the Scandinavian Caledonides. Tectonophysics 47, 393419.CrossRefGoogle Scholar
Gee, D. G., Bogolepova, O. K. & Lorenz, H. 2006. The Timanide, Caledonide and Uralide orogens in the Eurasian high Arctic, and relationships to the palaeo-continents Laurentia, Baltica and Siberia. In European Lithosphere Dynamics (eds Gee, D. G. & Stephenson, R.), pp. 507–20. Geological Society of London, Memoir no. 32.Google Scholar
Gee, D. G., Fossen, H., Henriksen, N. & Higgins, A. K. 2008. From the Early Paleozoic Platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland. Episodes 31, 4451.CrossRefGoogle Scholar
Gee, D. G. & Hellman, F. J. 1996. Zircon Pb-evaporation ages from the Smutsbreen Formation, southern Ny Friesland: new evidence for Caledonian thrusting in Svalbard's Eastern Terrane. Zeitschrift für Geologische Wissenschaften 23, 429–39.Google Scholar
Gee, D. G. & Hjelle, A. 1966. On the crystalline rock of northwest Spitsbergen. In Norsk Polarinstitutt Årbok 1964, pp. 3145. Oslo: Norsk Polarinstitutt.Google Scholar
Gee, D. G., Johansson, Å., Ohta, Y., Tebenkov, A. M., Krasilshikov, A., Balashov, Y. A., Larionov, A. N., Gannibal, L. F. & Ryungenen, G. I. 1995. Grenvillian basement and a major unconformity within the Caledonides of Nordaustlandet, Svalbard. Precambrian Research 70, 215–34.CrossRefGoogle Scholar
Gee, D. G., Kumpulainen, R., Roberts, D., Stephens, M. B. & Zachrisson, E. 1985. Scandinavian Caledonides, Tectonostratigraphic Map. Scale 1:2,000,000. Sveriges Geologiska Undersökning.Google Scholar
Gee, D. G., Larionov, A. N., Belyakova, L. & Pystin, A. M. 2007. Timanian deformation, metamorphism and granite intrusion in the Sub-Polar Urals. In The Arctic Conference Days 2007 (eds Brekke, H., Henriksen, S., & Haugdal, G.), pp. 75–6. International Conference on Arctic Margins (ICAM) VNGF, Tromsø: Norwegian Geological Society.Google Scholar
Gee, D. G. & Page, L. M. 1994. Caledonian terrane assembly on Svalbard; new evidence from 40 Ar/39 Ar dating in Ny Friesland. American Journal of Science 294, 1166–86.CrossRefGoogle Scholar
Gee, D. G. & Pease, V. 2004. The Neoproterozoic Timanide Orogen of Eastern Baltica. London: Geological Society, 255 pp.Google Scholar
Gee, D. G. & Teben'kov, A. M. 2004. Svalbard: a fragment of the Laurentian margin. In The Neoproterozoic Timanide Orogen of Eastern Baltica (eds. Gee, D. G. & Pease, V.), pp. 191206. Geological Society of London, Memoir no. 30.Google Scholar
Gromet, L. P. & Gee, D. G. 1998. An evaluation of the age of high-grade metamorphism in the Caledonides of Biskayerhalvøya, NW Svalbard. GFF 120, 199208.CrossRefGoogle Scholar
Guo, L., Schekoldin, R. & Scott, R. 2010. The Devonian succession in northern Novaya Zemlya, Arctic Russia: sedimentology, palaeogeography and hydrocarbon occurrence. Journal of Petroleum Geology 33, 105–21.CrossRefGoogle Scholar
Halverson, G. P., Maloof, A. & Hoffman, P. F. 2004. The Marinoan glaciation (Neoproterozoic) in northeast Svalbard. Basin Research 16, 297324.CrossRefGoogle Scholar
Harland, W. B. 1958. The Caledonian sequence in Ny Friesland, Sptisbergen. Quarterly Journal of the Geological Society 114, 307–42.CrossRefGoogle Scholar
Harland, W. B. 1971. Tectonic transpression in Caledonian Spitsbergen. Geological Magazine 108, 2741.CrossRefGoogle Scholar
Harland, W. B. 1997. The Geology of Svalbard. Bath: Geological Society of London, 552 pp.Google Scholar
Harland, W. B. & Wright, N. J. R. 1979. Alternative hypothesis for the pre-Carboniferous evolution of Svalbard. In The Geological Development of Svalbard During the Precambrian, Lower Palaeozoic, and Devonian. Symposium on Svalbard's geology, Oslo 2–5 June 1975, pp. 89117. Norsk Polarinstitutt Skrifter 167, Oslo: Norsk Polarinstitutt.Google Scholar
Hellman, F. J., Gee, D. G., Johansson, Å. & Witt-Nilsson, P. 1997. Single-zircon Pb evaporation geochronology constrains basement-cover relationships in the lower Hecla Hoek Complex of northern Ny Friesland, Svalbard. Chemical Geology 137, 117–34.CrossRefGoogle Scholar
Hellman, F. J., Gee, D. G. & Witt-Nilsson, P. 2001. Late Archean basement in the Bangenhuken Complex of the Nordbreen Nappe, western Ny-Friesland, Svalbard. Polar Research 20, 4959.CrossRefGoogle Scholar
Henriksen, N. 2008. Geological History of Greenland: Four billion years of earth evolution. Copenhagen: Geological Survey of Denmark and Greenland, 272 pp.Google Scholar
Higgins, A. K., Gilotti, J. A. & Smith, M. P. 2008. The Greenland Caledonides: Evolution of the northeast margin of Laurentia. Boulder, Colorado: Geological Society of America Memoir 202, 388 pp.CrossRefGoogle Scholar
Higgins, A. K. & Leslie, A. G. 2000. Restoring thrusting in the East Greenland Caledonides. Geology 28, 1019–22.2.0.CO;2>CrossRefGoogle Scholar
Higgins, A. K. & Leslie, A. G. 2008. Architecture and evolution of the East Greenland Caledonides – An introduction. In The Greenland Caledonides: Evolution of the Northeast Margin of Laurentia (eds Higgins, A. K., Gilotti, J. A., & Smith, M. P.), pp. 2953. Boulder, Colorado: Geological Society of America Memoir 202.CrossRefGoogle Scholar
Jackson, H. R. & Gunnarsson, K. 1990. Reconstructions of the Arctic: Mesozoic to present. Tectonophysics 172, 303–22.CrossRefGoogle Scholar
Jakobsson, M., Macnab, R., Mayer, L., Anderson, R., Edwards, M., Hatzky, J., Schenke, H. W. & Johnson, P. 2008. An improved bathymetric portrayal of the Arctic Ocean: implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophysical Research Letters 35, L07602.CrossRefGoogle Scholar
Johansson, Å. 2009. Baltica, Amazonia and the SAMBA connection – 1000 million years of neighbourhood during the Proterozoic? Precambrian Research 175, 221–34.CrossRefGoogle Scholar
Johansson, Å., Gee, D. G., Larionov, A. N., Ohta, Y. & Tebenkov, A. M. 2005. Grenvillian and Caledonian evolution of eastern Svalbard – a tale of two orogenies. Terra Nova 17, 317–25.CrossRefGoogle Scholar
Johansson, A., Maluski, H. & Gee, D. G. 2001. Ar-Ar dating of Caledonian and Grenvillian rocks from northeasternmost Svalbard – evidence of two stages of Caledonian tectonothermal activity in the high Arctic? Norsk Geologisk Tidsskrift 81, 263–81.Google Scholar
Kalsbeek, F., Higgins, A. K., Jepsen, H. F., Frei, R. & Nutman, A. P. 2008. Granites and granites in the East Greenland Caledonides. In The Greenland Caledonides: Evolution of the Northeast Margin of Laurentia (eds Higgins, A. K., Gilotti, J. A., & Smith, M. P.), pp. 227–49. Boulder, Colorado: Geological Society of America Memoir 202.CrossRefGoogle Scholar
Kalsbeek, F., Thrane, K., Nutman, A. P. & Jepsen, H. F. 2000. Late Mesoproterozoic to early Neoproterozoic history of the East Greenland Caledonides: evidence for Grenvillian orogenesis? Journal of the Geological Society, London 157, 1215–25.CrossRefGoogle Scholar
Kaplan, A. A., Copeland, P., Bro, E. G., Korago, E. A., Proskurnin, V. F., Vinogradov, N. A. & Vrolijk, P. J. 2001. New radiometric ages of igneous and metamorphic rocks from the Russian Arctic. In Abstracts, AAPG Regional Conference 2001, St Petersburg. St Petersburg: VNIGRI and AAPG.Google Scholar
Kirkland, C. L., Bingen, B., Whitehouse, M. J., Beyer, E. & Griffin, W. L. 2011. Neoproterozoic palaeogeography in the North Atlantic Region: inferences from the Akkajaure and Seve Nappes of the Scandinavian Caledonides. Precambrian Research 186, 127–46.CrossRefGoogle Scholar
Kirkland, C. L., Daly, J. S. & Whitehouse, M. J. 2006. Granitic magmatism of Grenvillian and late Neoproterozoic age in Finnmark, Arctic Norway – constraining pre-Scandian deformation in the Kalak Nappe Complex. Precambrian Research 145, 2452.CrossRefGoogle Scholar
Kirkland, C. L., Daly, J. S. & Whitehouse, M. J. 2007. Provenance and terrane evolution of the Kalak Nappe Complex, Norwegian Caledonides: implications for Neoproterozoic paleogeography and tectonics. Journal of Geology 115, 2141.CrossRefGoogle Scholar
Kirkland, C. L., Pease, V., Whitehouse, M. J. & Ineson, J. R. 2009. Provenance record from Mesoproterozoic-Cambrian sediments of Peary Land, North Greenland: implications for the ice-covered Greenland Shield and Laurentian palaeogeography. Precambrian Research 170, 4360.CrossRefGoogle Scholar
Korago, E. A. & Chukhonin, A. P. 1988. The granitoid formations of Novaya Zemlya. Izvestiya Akademii Nauk SSR Seriya Geologicheskaya 10, 2835.Google Scholar
Korago, E. A., Kovaleva, G. N., Gee, D. G., Stolbov, N. M., Sobolev, N. N., Gol'tsin, N. A. & Berejnaya, N. G. 2009. On the question of formation of continental crust in the west Eurasian Arctic (based on geochronological dating of zircons from the Ordovician and Silurian of north-western Novaya Zemlya). In Materials for the Meeting on Geology of Earth's Polar Regions. Geology of the Earth's Polar Regions 2009. Moscow: Russian Academy of Sciences.Google Scholar
Korago, E. A., Kovaleva, G. N., Lopatin, B. G. & Orgo, V. V. 2004. The Precambrian rocks of Novaya Zemlya. In The Neoproterozoic Timanide Orogen of Eastern Baltica (eds Gee, D. G. & Pease, V.), pp. 135–43. Geological Society of London, Memoir no. 30.Google Scholar
Kos'ko, M. K., Cecile, M. P., Harrison, J. C., Ganelin, V. G., Khandoshko, N. V. & Lopatin, B. G. 1993. Geology of Wrangel Island, Between Chukchi and East Siberian Seas, Northeastern Russia. Ottawa: Geological Survey of Canada, 101 pp.CrossRefGoogle Scholar
Kosteva, N. & Tebenkov, A. M. 2011. Provenance of Neoproterozoic sediments in Nordaustlandet, Svalbard: LA-ICP-MS dating of detrital zircons. In Abstracts, pp. 8990. International Conference on Arctic Margins, Fairbanks. University of Alaska.Google Scholar
Kumpulainen, R. 1980. Upper Proterozoic stratigraphy and depositional environments of the Tossasfjället Group, Särv Nappe, southern Swedish Caledonides. Geologiska Foreningens i Stockholm Forhandlingar 102, 531–50.CrossRefGoogle Scholar
Ladenberger, A., Gee, D. G., Claesson, S. & Majka, J. 2009. Interpreting Himalayan orogeny via the Paleozoic Scandian analogue. Geochimica et Cosmochimica Acta 73, A714.Google Scholar
Larionov, A. N., Gee, D. G., Tebenkov, A. M. & Witt-Nilsson, P. 1998. Detrital zircon ages from the Planetfjella Group of the Mosselhalvøya Nappe, NE Spitsbergen, Svalbard. In Abstracts, p. 109. International Conference on Arctic Margins – ICAM III, Celle, Germany. BGR.Google Scholar
Larionov, A. N., Tebenkov, A. M., Gee, D. G.., Czerny, J. & Majka, J. 2010. Recognition of Precambrian tectonostratigraphy in Wedel-Jarlsberg Land, Southwestern Spitsbergen. NGF Abstracts and Proceedings 1, 106.Google Scholar
Lebedeva-Ivanova, N. N., Gee, D. G. & Sergeyev, M. V. 2011. Crustal structure of the East Siberian continental margin and Podvodnikov and Makarov basins, based on refraction seismic data (TransArctic 1989–1991). In Arctic Petroleum Geology (eds Spencer, A. M., Gautier, D., Stoupakova, A., Embry, A. & Sørensen, K.), pp. 395411. Geological Society of London, Memoir no. 35.Google Scholar
Lemieux, Y., Hadlari, T. & Simonetti, A. 2011. Detrital zircon geochronology and provenance of Devono-Mississippian strata in the northern Canadian Cordilleran miogeocline. Canadian Journal of Earth Sciences 48, 515–41.CrossRefGoogle Scholar
Leslie, A. G. & Nutman, A. P. 2003. Evidence for Neoproterozoic orogenesis and early high temperature Scandian deformation events in the southern East Greenland Caledonides. Geological Magazine 140, 309–33.CrossRefGoogle Scholar
Li, Z. X., Bogdanova, S. V., Collins, A. S., Davidson, A., De Waele, B., Ernst, R. E., Fitzsimons, I. C. W., Fuck, R.A., Gladkochub, D. P., Jacobs, J., Karlstrom, K. E., Lu, S., Natapov, L. M., Pease, V., Pisarevsky, S. A., Thrane, K. & Vernikovsky, V. 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Research 160, 179210.CrossRefGoogle Scholar
Lorenz, H., Gee, D. G. & Frei, D. 2011. Provenance of the Palaeozoic strata of northern Novaya Zemlya and implications for Arctic tectonics. In Abstracts, pp. 120–2. International Conference on Arctic Margins, Fairbanks. University of Alaska.Google Scholar
Lorenz, H., Gee, D. G. & Simonetti, A. 2008. Detrital zircon ages and provenance of the Late Neoproterozoic and Palaeozoic successions on Severnaya Zemlya, Kara Shelf: a tie to Baltica. Norwegian Journal of Geology 88, 235–58.Google Scholar
Lorenz, H., Männik, P., Gee, D. G. & Proskurnin, V. 2008. Geology of the Severnaya Zemlya Archipelago and new tectonic interpretation for the North Kara Terrane in the Russian high Arctic. International Journal of Earth Sciences 97, 519–47.CrossRefGoogle Scholar
Majka, J. 2011. Torellian Orogeny in southwestern Svalbard: the missing link between the Pearya Terrane and the Timanide Orogen? In Abstracts, pp. 123–4. International Conference on Arctic Margins, Fairbanks. University of Alaska.Google Scholar
Majka, J., Mazur, S., Manecki, M., Czerny, J. & Holm, D. K. 2008. Late Neoproterozoic amphibolite-facies metamorphism of a Pre-Caledonian basement block in southwest Wedel Jarlsberg Land, Spitsbergen: new evidence from U-Th-Pb dating of monazite. Geological Magazine 145, 822–30.CrossRefGoogle Scholar
Malone, S. J. & McClelland, W. C. 2010. Detrital zircon geochronology of Neoproterozoic and Paleozoic units of the Pearya terrane, Ellesmere Island, Canada. In Abstracts with Programs, p. 573. 2010 GSA Denver Annual Meeting, Denver. Geological Society of America.Google Scholar
Manecki, M., Holm, D. K., Czerny, J. & Lux, D. 1998. Thermochronological evidence for late Proterozoic (Vendian) cooling in southwest Wedel Jarlsberg Land, Spitsbergen. Geological Magazine 135, 63–9.CrossRefGoogle Scholar
Max, M. D. 1979. Extent and disposition of Grenville tectonism in the Precambrian continental crust adjacent to the North Atlantic. Geology 7, 76–8.2.0.CO;2>CrossRefGoogle Scholar
Miller, E. L., Gehrels, G. E., Pease, V. & Sokolov, S. 2010. Stratigraphy and U-Pb detrital zircon geochronology of Wrangel Island, Russia: implications for Arctic paleogeography. American Association of Petroleum Geologists Bulletin 94, 665–92.CrossRefGoogle Scholar
Molnar, P. & Tapponnier, P. 1977. Relation of the tectonics of eastern China to the India-Eurasia collision: application of slip-line field theory to large-scale continental tectonics. Geology 5, 212–16.2.0.CO;2>CrossRefGoogle Scholar
Moore, T. E., Dumitru, T. A., Adams, K. E., Witebsky, S. N. & Harris, A. G. 2002. Origin of the Lisburne Hills–Herald Arch structural belt: stratigraphic, structural, and fission-track evidence from the Cape Lisburne area, northwestern Alaska. Geological Society of America Special Papers 360, 77109.Google Scholar
Ohta, Y. 1994. Caledonian and Precambrian history in Svalbard: a review, and an implication of escape tectonics. Tectonophysics 231, 183–94.CrossRefGoogle Scholar
Ohta, Y. & Larionov, A. N. 1998. Grenvillian single-grain zircon Pb age of a granitic rock from the southern island of Hesteskoholmen, Liefdefjorden, northwestern Spitsbergen, Svalbard. Polar Research 17, 147–54.CrossRefGoogle Scholar
Ohta, Y., Larionov, A. N. & Tebenkov, A. M. 2003. Single-grain zircon dating of the metamorphic and granitic rocks from the Biscayarhalvøya-Holtedahlfonna zone, north-west Spitsbergen. Polar Research 22, 247–65.Google Scholar
Ohta, Y., Larionov, A. N., Tebenkov, A. M., Lepvrier, C., Maluski, H., Lange, M. & Hellebrandt, B. 2002. Single-zircon Pb-evaporation and 40Ar/39Ar dating of the metamorphic and granitic rocks in north-west Spitsbergen. Polar Research 21, 7389.CrossRefGoogle Scholar
Pease, V. 2001. East European Craton margin source for the allochthonous Northern Terrane of Tajmyr, Arctic Siberia. EOS Transactions 82, AGU Fall Meeting Supplement.Google Scholar
Pease, V., Gee, D. G. & Lopatin, B. G. 2001. Is Franz Josef Land affected by Caledonian deformation? In EUG XI Abstract Volume. EUG XI, Strasbourg, France. European Union of Geosciences.Google Scholar
Pease, V. & Scott, R. A. 2009. Crustal affinities in the Arctic Uralides, northern Russia: significance of detrital zircon ages from Neoproterozoic and Palaeozoic sediments in Novaya Zemlya and Taimyr. Journal of the Geological Society, London 166, 517–27.CrossRefGoogle Scholar
Pettersson, C. H., Pease, V. & Frei, D. 2009. U-Pb zircon provenance of metasedimentary basement of the Northwestern Terrane, Svalbard: implications for the Grenvillian-Sveconorwegian orogeny and development of Rodinia. Precambrian Research 175, 206–20.CrossRefGoogle Scholar
Pettersson, C. H., Pease, V. & Frei, D. 2010. Detrital zircon U-Pb ages of Silurian-Devonian sediments from NW Svalbard: a fragment of Avalonia and Laurentia? Journal of the Geological Society, London 167, 1019–32.CrossRefGoogle Scholar
Pettersson, C. H., Tebenkov, A. M., Larionov, A. N., Andresen, A. & Pease, V. 2009. Timing of migmatization and granite genesis in the Northwestern Terrane of Svalbard, Norway: implications for regional correlations in the Arctic Caledonides. Journal of the Geological Society, London 166, 147–58.CrossRefGoogle Scholar
Peucat, J. J., Ohta, Y., Gee, D. G. & Bernard-Griffiths, J. 1989. U-Pb, Sr and Nd evidence for Grenvillian and latest Proterozoic tectonothermal activity in the Spitsbergen Caledonides, Arctic Ocean. Lithos 22, 275–85.CrossRefGoogle Scholar
Pisarevsky, S. A., Wingate, M. T. D., Powell, C. M., Johnson, S. & Evans, D. A. D. 2003. Models of Rodinia assembly and fragmentation. In Proterozoic East Gondwana: Supercontinent assembly and breakup (eds Yoshida, M., Windley, B. E., & Dasgupta, S.), pp. 3555. Geological Society of London, Special Publication no. 206.Google Scholar
Rivers, T. 1997. Lithotectonic elements of the Grenville Province: review and tectonic implications. Precambrian Research 86, 117–54.CrossRefGoogle Scholar
Rivers, T. 2008. Assembly and preservation of lower, mid, and upper orogenic crust in the Grenville Province – implications for the evolution of large hot long-duration orogens. Precambrian Research 167, 237–59.CrossRefGoogle Scholar
Roberts, D. 2007. Palaeocurrent data from the Kalak Nappe Complex, northern Norway: a key element in models of terrane affiliation. Norsk Geologisk Tidsskrift 87, 319–28.Google Scholar
Roberts, R. J., Corfu, F., Torsvik, T. H., Ashval, L. D. & Ramsay, D. M. 2006. Short-lived mafic magmatism at 560–570 Ma in the northern Norwegian Caledonides: U–Pb zircon ages from the Seiland Igneous Province. Geological Magazine 143, 887903.CrossRefGoogle Scholar
Soper, N. J., Strachan, R. A., Holdsworth, R. E., Gayer, R. A. & Greiling, R. O. 1992. Sinistral transpression and the Silurian closure of Iapetus. Journal of the Geological Society, London 149, 871–80.CrossRefGoogle Scholar
Steiger, R. H., Hansen, B. T., Schuler, C., Bär, M. T. & Henriksen, N. 1979. Polyorogenic nature of the Southern Caledonian Fold Belt in East Greenland: an isotopic age study. Journal of Geology 87, 475–95.CrossRefGoogle Scholar
Strachan, R. A., Nutman, A. P. & Friderichsen, J. D. 1995. SHRIMP U-Pb geochronology and metamorphic history of the Smallefjord sequence, NE Greenland Caledonides. Journal of the Geological Society, London 152, 779–84.CrossRefGoogle Scholar
Streule, M. J., Strachan, R. A., Searle, M. P. & Law, R. D. 2010. Comparing Tibet-Himalayan and Caledonian crustal architecture, evolution and mountain building processes. In Continental Tectonics and Mountain Building – The legacy of Peach and Horne (eds Law, R. D., Butler, R. W. H., Holdsworth, R. E., Krabbendam, M. & Strachan, R. A.), pp. 207–32. Geological Society of London, Special Publication no. 335.Google Scholar
Strömberg, A. G. 1961. On the Tectonics of the Caledonides in the South-Western Part of the County of Jämtland, Sweden. Uppsala: Almqvist & Wicksell, 92 pp.Google Scholar
Tebenkov, A. M., Sandelin, S., Gee, D. G. & Johansson, A. 2002. Caledonian migmatization in central Nordaustlandet, Svalbard. Norsk Geologisk Tidskrift 82, 1582.Google Scholar
Trettin, H. P. 1987. Pearya: a composite terrane with Caledonian affinities in northern Ellesmere Island. Canadian Journal of Earth Sciences 24, 224–45.CrossRefGoogle Scholar
Trettin, H. P. 1991 a. Tectonic framework. In Geology of the Innuitian Orogen and Arctic Platform of Canada and Greenland (ed. Trettin, H. P.), pp. 5966. Geology of Canada 3. Ottawa: Geological Survey of Canada.CrossRefGoogle Scholar
Trettin, H. P. 1991 b. The Proterozoic to Late Silurian record of Pearya. In Geology of the Innuitian Orogen and Arctic Platform of Canada and Greenland (ed. Trettin, H. P.), pp. 241–59. Geology of Canada 3. Ottawa: Geological Survey of Canada.CrossRefGoogle Scholar
Trettin, H. P., Parrish, R. & Loveridge, W. D. 1987. U-Pb age determinations on Proterozoic to Devonian rocks from northern Ellesmere Island, Arctic Canada. Canadian Journal of Earth Sciences 24, 246–56.CrossRefGoogle Scholar
van Waterschoot van der Gracht, W. A. J. M. 1928. Introduction: the problem of continental drift. In The Theory of Continental Drift: A symposium (ed. van Waterschoot van der Gracht, W. A. J. M.), pp. 175. Tulsa: American Association of Petroleum Geologists.Google Scholar
Vernikovsky, V., Vernikovskaya, A. E., Pease, V. L. & Gee, D. G. 2004. Neoproterozoic Orogeny along the margins of Siberia. In The Neoproterozoic Timanide Orogen of Eastern Baltica (eds Gee, D. G. & Pease, V.), pp. 233–47. Geological Society of London, Memoir no. 30.Google Scholar
Watt, G. R. & Thrane, K. 2001. Early Neoproterozoic events in East Greenland. Precambrian Research 110, 165–84.CrossRefGoogle Scholar
Watt, G. R., Kinny, P. D. & Friderichsen, J. D. 2000. U-Pb geochronology of Neoproterozoic and Caledonian tectonothermal events in the East Greenland Caledonides. Journal of the Geological Society, London 157, 1031–48.CrossRefGoogle Scholar
Williams, I. S. & Claesson, S. 1987. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. Contributions to Mineralogy and Petrology 97, 205–17.CrossRefGoogle Scholar
Wilson, J. T. 1966. Did the Atlantic close and then re-open? Nature 211, 676–81.CrossRefGoogle Scholar
Witt-Nilsson, P., Gee, D. G. & Hellman, F. J. 1998. Tectonostratigraphy of the Caledonian Atomfjella Antiform of northern Ny Friesland, Svalbard. Norsk Geologisk Tidsskrift 78, 6780.Google Scholar
Zachrisson, E. 1986. Scandinavian Caledonides, strata-bound sulphide deposits. International Geological Correlation Programme (IGCP); Project No. 60.Google Scholar
Zachrisson, E., Greiling, R. O. & Persson, P. O. 1996. Recognition of basement rocks in the metamorphic Seve Nappes: the U-Pb zircon ages of the Nuortenjuone Gneiss, Upper Allochthon, central Swedish Caledonides. In Radiometric Dating Results 2, pp. 5771. Research Papers series C 828. Uppsala: Sveriges Geologiska Undersökning.Google Scholar