Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T22:27:27.922Z Has data issue: false hasContentIssue false

A high-resolution, multiproxy stratigraphic analysis of the Devonian–Carboniferous boundary sections in the Moravian Karst (Czech Republic) and a correlation with the Carnic Alps (Austria)

Published online by Cambridge University Press:  02 May 2013

TOMÁŠ KUMPAN*
Affiliation:
Department of Geological Sciences, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
ONDŘEJ BÁBEK
Affiliation:
Department of Geological Sciences, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic Department of Geology, Palacký University, 17. listopadu 12, 772 00, Olomouc, Czech Republic
JIŘÍ KALVODA
Affiliation:
Department of Geological Sciences, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
JIŘÍ FRÝDA
Affiliation:
Institute of Inorganic Chemistry AS CR, v.v.i., 250 68, Řež, Czech Republic Czech Geological Survey, Klárov 3/131, 118 21, Prague 1, Czech Republic
TOMÁŠ MATYS GRYGAR
Affiliation:
Department of Environmental Geosciences, Czech University of Life Sciences, Kamýcká 129, 165 21, Prague 6, Czech Republic
*
Author for correspondence: kumpan.tom@gmail.com

Abstract

A multidisciplinary correlation of the Devonian–Carboniferous (D–C) boundary sections from the Moravian Karst (Czech Republic) and the Carnic Alps (Austria), based on conodont and foraminifer biostratigraphy, microfacies analysis, field gamma-ray spectroscopy (GRS), carbon isotopes and element geochemistry, is presented in this paper. The study is focused on the interval from the Middle Palmatolepis gracilis expansa Zone (Late Famennian) to the Siphonodella sandbergi Zone (Early Tournaisian). In Lesní lom (Moravian Karst), a positive δ13C excursion in the Bisphatodus costatusProtognathodus kockeli Interregnum from a distinct laminated carbonate horizon is correlated with a carbon isotope excursion from the Grüne Schneid section of the Carnic Alps and is interpreted as the equivalent of the Hangenberg black shales and a local expression of the global Hangenberg Event sensu stricto. Higher up at both sections, a significant increase in the terrigenous input, which is inferred from the GRS signal and elevated concentrations of terrigenous elements (Si, Ti, Zr, Rb, Al, etc.), provides another correlation tieline and is interpreted as the equivalent of the Hangenberg sandstone. Both horizons are discussed in terms of relative sea-level fluctuations and palaeoceanographic changes. Recent studies show that conodont biostratigraphy is facing serious problems associated with the taxonomy of the first siphonodellids, their dependence on facies and discontinuous occurrences of protognathodids at the D–C boundary. Therefore, the correlative potential of geochemical and petrophysical signatures is high and offers an alternative for the refining of the problematic biostratigraphic division of the D–C boundary.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. A. S. & Weaver, C. E. 1958. Thorium-to-uranium ratios as indicators of sedimentary processes; example of concept of geochemical facies. American Association of Petroleum Geologists Bulletin 42, 387430.Google Scholar
Bábek, O. & Kalvoda, J. 2001. Compositional variations and patterns of conodont reworking in Late Devonian and Early Carboniferous calciturbidites (Moravia, Czech Republic). Facies 44, 211–26.Google Scholar
Bábek, O., Kalvoda, J., Aretz, M., Cossey, P. J., Devuyst, F. X., Herbig, H. G. & Sevastopulo, G. D. 2010. The correlation potential of magnetic susceptibility and outcrop gamma-ray logs at Tournaisian-Visean boundary sections in Western Europe. Geologica Belgica 13, 291308.Google Scholar
Bandel, K. 1974. Deep-water limestones from the Devonian-Carboniferous of the Carnic Alps, Austria. In Pelagic Sediments: On Land and Under the Sea (eds Hsü, K. J. & Jenkyns, H. C.), pp. 7192. Special Publication of the International Association of Sedimentologists 1.Google Scholar
Barskov, I. S., Simakov, K. V., Alekseev, A. S., Bogoslovsky, B. I., Byvsheva, T. V., Gaciev, M. H., Kononova, L. N., Kochetkova, N. M., Kusina, L. F. & Reitlinger, E. A. 1984. Devonian-Carboniferous transitional deposits of the Berchogur section, Mugodzhary, USSR (Preliminary report). Courier Forschungsinstitut Senckenberg 67, 207–30.Google Scholar
Boardman, M. R. & Neumann, A. C. 1984. Sources of periplatform carbonates: Northwest Providence Channel, Bahamas. Journal of Sedimentary Petrology 54, 1110–23.Google Scholar
Brand, U., Legrand-Blain, M. & Streel, M. 2004. Biochemostratigraphy of the Devonian-Carboniferous boundary global stratotype section and point, Griotte Formation, La Serre, Montagne Noire, France. Palaeogeography, Palaeoclimatology, Palaeoecology 205, 337–57.Google Scholar
Buggisch, W. & Joachimski, M. M. 2006. Carbon isotope stratigraphy of the Devonian of central and southern Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 240, 6688.CrossRefGoogle Scholar
Caplan, M. L. & Bustin, R. M. 1999. Devonian-Carboniferous Hangenberg mass extinction event, widespread organic-rich mudrock and anoxia: causes and consequences. Palaeogeography, Palaeoclimatology, Palaeoecology 148, 187207.Google Scholar
Caplan, M. L., Bustin, R. M. & Grimm, K. A. 1996. Demise of a Devonian-Carboniferous carbonate ramp by eutrophication. Geology 24, 715–18.Google Scholar
Caputo, M. V. & Crowell, J. C. 1985. Migration of glacial centers across Gondwana during Paleozoic Era. Geological Society of America Bulletin 96, 1020–36.Google Scholar
Corradini, C., Kaiser, S. I., Perri, M. C. & Spalleta, C. 2011. Protognathodus (Conodonta) and its potential as a tool for defining the Devonian/Carboniferous boundary. Rivista Italiana di Paleontologia e Stratigrafia 117 (1), 1528.Google Scholar
Cramer, B. D., Day, J. E., Saltzman, M. R. & Witzke, B. J. 2011. The uppermost Famennian Hangenberg excursion in North America and search for the base of the Carboniferous. Geological Society of America, Abstracts with Programs 43 (1), 151.Google Scholar
Davydov, V., Schmitz, M. & Korn, D. 2011. The Hangenberg Event was abrupt and short at the global scale: the quantitative integration and intercalibration of biotic and geochronologic data within the Devonian-Carboniferous transition. Geological Society of America, Abstracts with Programs 43 (5), 128.Google Scholar
Ehrenberg, S. N. & Svana, T. A. 2001. Use of spectral gamma-ray signature to interpret stratigraphic surfaces in carbonate strata; an example from the Finnmark carbonate platform (Carboniferous-Permian), Barents Sea. American Association of Petroleum Geologists Bulletin 85, 295308.Google Scholar
Flajs, G. & Feist, R. 1988. Index conodonts, trilobites and environment of the Devonian-Carboniferous boundary beds at La Serre (Montagne Noire, France). Courier Forschungsinstitut Senckenberg 100, 53107.Google Scholar
Halgedah, S. L., Jarrard, R. D., Brett, C. E. & Allison, P. A. 2009. Geophysical and geological signatures of relative sea level change in the upper Wheeler Formation, Drum Mountains, West-Central Utah: a perspective into exceptional preservation of fossils. Palaeogeography, Palaeoclimatology, Palaeoecology 277, 3456.Google Scholar
Hance, L., Hou, H., Vachard, D., Devuyst, F. X., Kalvoda, J., Poty, E. & Wu, X. 2011. Upper Famennian to Visean Foraminifers and Some Carbonate Microproblematica From South China – Hunan, Guangxi and Guizhou. Beijing: Beijing Geological Publishing House, 359 pp.Google Scholar
Hladil, J. 1994. Moravian Middle and Late Devonian buildups: evolution in time and space with respect to Laurussian shelf. Courier Forschungsinstitut Senckenberg 172, 111–25.Google Scholar
Isaacson, P. E., Hladil, J., Shen, J. W., Kalvoda, J. & Grader, G. 1999. Late Devonian (Famennian) glaciation in South America and marine offlap on other continents. Abhandlungen der Geologischen Bundesanstalt 54, 239–57.Google Scholar
Isaacson, P., Díaz-Martínez, E., Grader, G. W., Kalvoda, J., Bábek, O. & Devuyst, F. X. 2008. Late Devonian–earliest Mississippian glaciation in Gondwanaland and its biogeographic consequences. Palaeogeography, Palaeoclimatology, Palaeoecology 268, 126–42.CrossRefGoogle Scholar
Ji, Q. 1985. Study on the phylogeny, taxonomy, zonation and biofacies of Siphonodella (conodonta). Institute of Geology, Bulletin 11, 5175.Google Scholar
Kaiser, S. I. 2009. The Devonian/Carboniferous stratotype section La Serre (Montagne Noire) revisited. Newsletters on Stratigraphy 43 (2), 195205.Google Scholar
Kaiser, S. I., Becker, R. T., Spalletta, C. & Steuber, T. 2009. High-resolution conodont stratigraphy, biofacies and extinctions around the Hangenberg Event in pelagic successions from Austria, Italy and France. Palaeontographica Americana 63, 97139.Google Scholar
Kaiser, S. I. & Corradini, C. 2011. The early siphonodellids (Conodonta, Late Devonian-Early Carboniferous): overview and taxonomic state. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 261, 1935.Google Scholar
Kaiser, S. I., Steuber, T. & Becker, T. R. 2008. Environmental change during the Late Famennian and Early Tournaisian (Late Devonian–Early Carboniferous): implications from stable isotopes and conodont biofacies in southern Europe. Geological Journal 43, 241–60.Google Scholar
Kaiser, S. I., Steuber, T., Becker, T. R. & Joachimski, M. M. 2006. Geochemical evidence for major environmental change at the Devonian–Carboniferous boundary in the Carnic Alps and the Rhenish Massif. Palaeogeography, Palaeoclimatology, Palaeoecology 240, 146–60.Google Scholar
Kalvoda, J. 1982. Biostratigraphy and palaeobiogeography of the Famennian and Lower Carboniferous in southeastern and eastern Moravia. Zemní Plyn Nafta 26 (4) 571–84.Google Scholar
Kalvoda, J. 1986. Upper Frasnian-Lower Tournaisian events and evolution of calcareous foraminifera, close links to climatic changes. In Global Bio-Events: A Critical Approach: Proceedings of the First International Meeting of the IGCP Project 216, “Global Biological Events in Earth History” (ed. Walliser, O. H.), pp. 225–36. Lecture Notes in Earth Sciences, 8. Berlin, Heidelberg: Spring-Verlag.Google Scholar
Kalvoda, J. 1998. The main phases of extension in the eastern part of the Rhenohercynian Zone. Acta Universitatis Carolinae, Geologica 42, 274–5.Google Scholar
Kalvoda, J. 2002. Late Devonian – Early Carboniferous foraminiferal fauna: zonation, evolutionary events, paleobiogeography and tectonic implications. Folia 39, 213 pp.Google Scholar
Kalvoda, J., Bábek, O., Fatka, O., Leichmann, J., Melichar, R. & Špaček, P. 2008. Brunovistulian terrane (Bohemian Massif, Central Europe) from late Proterozoic to late Paleozoic: a review. International Journal of Earth Sciences 97, 497517.CrossRefGoogle Scholar
Koptíková, L., Bábek, O., Hladil, J. & Slavík, L. 2010. Stratigraphic significance and resolution of spectral reflectance logs in Lower Devonian carbonates of the Barrandian area, Czech Republic; a correlation with magnetic susceptibility and gamma-ray logs. Sedimentary Geology 225, 8398.Google Scholar
Kalvoda, J., Bábek, O. & Malovaná, A. 1999. Sedimentary and biofacies record in calciturbidites at the Devonian-Carboniferous boundary in Moravia (Moravian-Silezian Zone, Middle Europe). Facies 41, 141–58.Google Scholar
Kalvoda, J. & Kukal, Z. 1987. Devonian-Carboniferous boundary in the Moravian Karst at Lesní lom, Brno – Líšeň, Czechoslovakia. Courier Forschungsinstitut Senckenberg 98, 95117.Google Scholar
Kalvoda, J., Leichmann, J., Bábek, O. & Melichar, R. 2003. Brunovistulian Terrane (Central Europe) and Istanbul Zone (NW Turkey): Late Proterozoic and Paleozoic tectonostratigraphic development and paleogeography. Geologica Carpathica 54, 139–52.Google Scholar
Kalvoda, J., Melichar, R., Bábek, O. & Leichmann, J. 2002. Late Proterozoic-Paleozoic tectonostratigraphic development and paleogeography of Brunovistulian Terrane and comparison with other terranes at the SE margin of Baltica-Laurussia. Journal of the Czech Geological Society 47, 81102.Google Scholar
Kulagina, E. I., Gibshman, N. B. & Pazukhin, V. N. 2003. Foraminiferal zonal standard for the Lower Carboniferous of Russia and its correlation with conodont zonation. Rivista Italiana di Paleontologia e Stratigrafia 109 (2), 173–85.Google Scholar
Lüning, S., Wendt, J., Belka, Z. & Kaufmann, B. 2004. Temporal-spatial reconstruction of the early Frasnian (Late Devonian) anoxia in NW Africa; new field data from the Ahnet Basin (Algeria). Sedimentary Geology 163, 237–64.CrossRefGoogle Scholar
Maynard, J. B. 2005. Manganiferous sediments, rocks, and ores. In Sediments, Diagenesis, and Sedimentary Rocks: Treatise on Geochemistry 7 (ed. Mackenzie, F. T.), pp. 289308. Amsterdam: Elsevier.Google Scholar
Myrow, P. M., Strauss, J. V., Creveling, J. R., Sicard, K. R., Ripperdan, R., Sandberg, Ch. A. & Hartenfels, S. 2011. A carbon isotopic and sedimentological record of the latest Devonian (Famennian) from the Western U.S. and Germany. Palaeogeography, Palaeoclimatology, Palaeoecology 306, 147–59.Google Scholar
Pazukhin, V. N., Kulagina, E. I. & Sedaeva, K. M. 2009. The Devonian/Carboniferous boundary on the western slope of the South Urals. In Carboniferous Type Sections in Russia and Potential Global Stratotypes: Southern Urals Session. Proceedings of the International Field Meeting ‘The historical type sections, proposed and potential GSSP of the Carboniferous in Russia’ (Ufa-Sibai, August 13–18, 2009) (eds Puchkov, V. N., Kulagina, E. I., Nikolaeva, S. V. & Kochetova, N. N.), pp. 2233. [in Russian].Google Scholar
Postma, G. & Ten Veen, J. H. 1999. Astronomically and tectonically linked variations in gamma-ray intensity in Late Miocene hemipelagic successions of the Eastern Mediterranean Basin. Sedimentary Geology 128, 112.Google Scholar
Poty, E., Devuyst, F. X. & Hance, L. 2006. Upper Devonian and Mississippian foraminiferal and rugose coral zonations of Belgium and Northern France: a tool for Eurasian correlations. Geological Magazine 143, 829–57.Google Scholar
Read, J. F. 1982. Carbonate platforms on passive (extensional) continental margins: types, characteristics, and evolution. Tectonophysics 81, 195212.Google Scholar
Reitlinger, E. A. & Kulagina, E. I. 1987. Foraminifera. In Fauna i Biostratigrafiya Pogranichnykh Otlozheniy Devona i Karbona Berchogura (Mugodzhary) (ed. Maslov, V. I.), pp. 6875. Moscow: Nauka Press.Google Scholar
Rider, M. H. 1999. The Geological Interpretation of Well Logs. Whittles Publishing Services, 288 pp.Google Scholar
Rosales, I., Quaseda, S. & Robles, S. 2001. Primary and diagenetic isotopic signals in fossils and hemipelagic carbonates: the Lower Jurassic of northern Spain. Sedimentology 48, 1149–69.Google Scholar
Roy, S. 2006. Sedimentary manganese metallogenesis in response to the evolution of the Earth system. Earth-Science Reviews 77, 273305.Google Scholar
Sageman, B. B. & Lyons, T. W. 2005. Geochemistry of fine-grained sediments and sedimentary rocks. In Sediments, Diagenesis, and Sedimentary Rocks: Treatise on Geochemistry 7 (ed. Mackenzie, F. T.), pp. 115–58. Amsterdam: Elsevier.Google Scholar
Sandberg, C. A., Ziegler, W., Leuteritz, K. & Brill, S. M. 1978. Phylogeny, speciation, and zonation of Siphonodella (Conodonta, Upper Devonian and Lower Carboniferous). Newsletter on Stratigraphy 7, 102–20.Google Scholar
Schlager, W. 2005. Carbonate Sedimentology and Sequence Stratigraphy. SEPM Concepts in Sedimentology and Paleontology 8, 200 pp.Google Scholar
Streel, M., Caputo, M. V., Loboziak, S. & Melo, J. H. G. 2000. Late Frasnian-Famennian climates based on palynomorph analyses and the question of the Late Devonian glaciations. Earth-Science Reviews 52, 121–73.Google Scholar
Svendsen, J. B. & Hartley, N. R. 2001. Comparison between outcrop spectral gamma ray logging and whole rock geochemistry: implications for quantitative reservoir characterisation in continental sequences. Journal of Marine and Petroleum Geology 18, 657–70.Google Scholar
Tragelehn, H. 2010. Short note on the origin of the conodont genus Siphonodella in the Uppermost Famennian. Subcommission on Devonian Stratigraphy, Newsletter 23, 41–3.Google Scholar
Vachard, D., Pille, L. & Gaillot, J. 2010. Palaeozoic foraminifera: systematics, palaeoecology and response to global changes. Revue de Micropaléontologie 53, 209–54.Google Scholar
Van Steenwinkel, M. 1993. The D/C boundary: comparison between the Dinant synclinorium and the northern border of the Rhenish Slate Mountains, a sequence-stratigraphic view. Annales de la Société Géologique de Belgique 115 (2), 665–81.Google Scholar
Veizer, J. 2009. Carbon isotope variations over geologic time. In Encyclopedia of Paleoclimatology and Ancient Environments (ed. Gornitz, V.), pp. 128–33. Dordrecht: Springer.Google Scholar
Walliser, O. H. 1984. Pleading for a natural D/C boundary. Courier Forschungsinstitut Senckenberg 67, 241–6.Google Scholar
Wright, V. P. 1994. Early Carboniferous carbonate systems: an alternative to the Cainozoic paradigm. Sedimentary Geology 93, 15.Google Scholar
Ziegler, W. & Sandberg, C. A. 1984. Palmatolepis-based revision of upper part of standard Late Devonian conodont zonation. In Conodont Biofacies and Provincialism (ed. Clark, D. L.), pp. 179–94. Geological Society of America, Special Paper no. 196.Google Scholar