Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-15T01:25:13.829Z Has data issue: false hasContentIssue false

Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic–early Cambrian of southwest Mongolia

Published online by Cambridge University Press:  01 May 2009

M. D. Brasier
Affiliation:
Department of Earth Sciences, Oxford University, Parks Road, Oxford OX1 3PR, UK
G. Shields
Affiliation:
Geologisches Institut, Sonneggstrasse 5, ETH-Zentrum, CH-8092, Switzerland
V. N. Kuleshov
Affiliation:
Geochemical Institute, Russian Academy of Sciences, Moscow, Russia
E. A. Zhegallo
Affiliation:
Palaeontological Institute, Russian Academy of Sciences, Moscow, Russia

Abstract

Five overlapping sections from the thick Neoproterozoic to early Cambrian sediments of western Mongolia were analysed to yield a remarkable carbon-isotope, strontium-isotope and small shellyfossil (SSF) record. Chemostratigraphy suggests that barren limestones of sequences 3 and 4, which lie above the two Maikhan Uul diamictites, are post-Sturtian but pre-Varangerian in age. Limestones and dolomites of sequence 5, with Boxonia grumulosa, have geochemical signatures consistent with a post-Varangerian (Ediacarian) age. A major negative δ13C anomaly (feature ‘W’) in sequence 6 lies a shortdistance above an Anabarites trisulcatus Zone SSF asemblage with hexactinellid sponges, of probable late Ediacarian age. Anomaly ‘W’ provides an anchor point for cross-correlation charts of carbon isotopes and small shelly fossils. Trace fossil assemblages with a distinctly Cambrian character first appear in sequence 8(Purella Zone), at the level of carbon isotopic feature ‘B’, provisionally correlated with the upper part of cycle Z in Siberia. A paradox is found from sequence 10 to 12 in Mongolia: Tommotian-type SSFs continue to appear, accompanied by Nemakit-Daldynian/Tommotian-type 87Sr/86Sr ratios but by increasingly heavyδ13C values that cannot be matched in the Tommotian of eastern Siberia. The steady rate of generic diversification in Mongolia also contrasts markedly with the Tommotian ‘diversity explosion’ in eastern Siberia, which occurs just above a major karstic emergence surface. One explanation is that sequences 10 to 12 in Mongolia preserve a pre-Tommotian portion of the fossil record that was missing or removed in easternSiberia. The Mongolian sections certainly deserve an important place in tracing the true course and timing of the ‘Cambrian radiation’.

Type
Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J. R. & Matthews, R. K., 1982. Isotopic signatures associated with early meteoric diagenesis. Sedimentology 29, 797817.CrossRefGoogle Scholar
Amantov, V. A., 1963. The principal characteristic features of stratigraphy and environmental conditions for the formation of Cambrian deposits in the north-east of Mongolia. Materials on the Geology of the MPR. Gostopotekhizdat 1963, 1528 (in Russian).Google Scholar
Asmerom, Y., Jacobsen, S. B., Knoll, A. H., Butterfield, N. J. & Swett, K., 1991. Sr isotope variations in Late Proterozoic seawater: Implications for crustal evolution. Geochimica et Cosmochimica Acta 55, 2883–94.CrossRefGoogle ScholarPubMed
Astashkin, V., Pegel’, T. V., Repina, L. N., Belyaeva, G. V., Esakova, N. V., Rozanov, A. Yu., Zhuravlev, A. Yu., Osadchaya, D. V. & Pkhomov, N. N., 1995. The Cambrian System of th Foldbelts of Russia and Mongolia. International Union of Geological Sciences, Publication no. 32.Google Scholar
Baikova, V. S. & Amelin, Yu. V., 1994. Sm-Nd age of Gashunnursky dyke complex (Mongolia). Doklady Academii Nauk Rossii 334, 343–5 (in Russian).Google Scholar
Bezzubetsev, V. V., 1963. On the Precambrian-Cambrianstratigraphy of the Dzabkhan River Basin. Materials on the Geology of MPR. Gostopotekhizdat 1963, 2942(in Russian).Google Scholar
Bowring, S. A., Grotzinger, J. P., Isachsen, C. E., Knoll, A. H., Pelechaty, S. & Kolosov, P., 1993. Calibrating Cambrian evolution. Science 261, 1293–8.CrossRefGoogle ScholarPubMed
Brand, U. & Veizer, J., 1980. Chemical diagenesis of a multi-component carbonate system–1: Trace elements. Journal of Sedimentary Petrology 50, 1219–36.Google Scholar
Brasier, M. D., 1989. Palaeotethyan Sections. In The Precambrian—Cambrian boundary (eds Cowie, J. W., and Brasier, M. D.), pp. 117–65. Oxford: Clarendon Oxford.Google Scholar
Brasier, M. D., 1990. Phosphogenic events and skeletal preservation across the Precambrian—Cambrian boundary interval. In Phosphorite Research and Development (eds Notholt, A. G., and Jarvis, I.), pp. 289303. Geological Society, London, Special Publication no. 52.Google Scholar
Brasier, M. D., 1992. Introduction. Background to the Cambrian explosion. Journal of the Geological Society, London 149, 585–7.CrossRefGoogle Scholar
Brasier, M. D., Anderson, M. M. & Corfield, R. M., 1992. Oxygen- and carbon-isotope stratigraphy of early Cambrian carbonates in Southeastern Newfoundland and England. Geological Magazine 129, 265–79.CrossRefGoogle Scholar
Brasier, M. D., Corfield, R. M., Derry, L. A., Rozanov, A. Yu. & Zhuravlev, A. Yu., 1994 a. Multiple δ13C excursions spanning the Cambrian explosion to the Botomian crisis in Siberia. Geology 22, 455–8.2.3.CO;2>CrossRefGoogle Scholar
Brasier, M. D., Cowie, J. W. & Taylor, M., 1994. Decision on the Precambrian—Cambrian boundary stratotype. Episodes 17, 38.CrossRefGoogle Scholar
Brasier, M. D., Khomentovsky, V. V. & Corfield, R. M., 1993. Stable isotopic calibration of the earliest skeletal fossil assemblages in eastern Siberia (Precambrian—Cambrian boundary). Terra Nova 5, 225–32.CrossRefGoogle Scholar
Brasier, M. D., Magaritz, M., Corfield, R., Huilin, Luo, Wu, Xiche, Lin, Ouyang, Zhiwen, Jiang, Hamdi, B., Tinggui, He & Fraser, A. G., 1990. The carbon- and oxygen-isotope record of the Precambrian—Cambrian boundary interval in China and Iran and their correlation. Geological Magazine 127, 319–32.CrossRefGoogle Scholar
Brasier, M. D., Rozanov, A. Yu., Zhuravlev, A. Yu., Corfield, R. M. & Derry, L. A., 1994 b. A carbon isotope reference scale for the Lower Cambrian succession in Siberia: Report of IGCP Project 303. Geological Magazine 131, 767–83.CrossRefGoogle Scholar
Burns, S. J., Haudenschild, U. & Matter, A., 1994. The strontium isotopic composition of carbonates from the late Precambrian (ca. 560–540 Ma) Huqf Group of Oman. Chemical Geology 111, 269–82.CrossRefGoogle Scholar
Burns, S. J. & Matter, A., 1993. Carbon isotopic record of the latest Proterozoic from Oman. Eclogae Geologica Helvetiae 86, 595607.Google Scholar
Buyakayte, M. J. & Kuz’Michev, A. B., 1989. 718 million years: the Rb—Sr erochron of the Arkoi Series of Eastern Sayan. Doklady Akademii Nauk SSSR, 150–4 (in Russian).Google Scholar
Coleman, R. G., 1990. Can international cooperation help reconstruct the Paleo-Asian ocean? Episodes 13(3), 184–5.CrossRefGoogle Scholar
Derry, L. A., Brasier, M. D., Corfield, R. M., Rozanov, A. Yu. & Zhuravlev, A. Yu., 1994. Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton: a palaeoenvironmental record during the ‘Cambrian excursion’. Earth and Planetary Science Letters 128, 671–81.CrossRefGoogle Scholar
Derry, L. A., Kaufman, A. J. & Jacobsen, S. B., 1992. Sedimentary cycling and environmental change in the Late Proterozoic: evidence from stable and radiogenic isotopes. Geochimica et Cosmochimica Acta 56, 1317–29.CrossRefGoogle Scholar
Derry, L. A., Keto, L. S., Jacobsen, S. B., Knoll, A. H. & Swett, K., 1989. Sr isotopic variations in Upper Proterozoic carbonates from Svalbard and East Greenland. Geochimica et Cosmochimica Acta 53, 2331–9.CrossRefGoogle ScholarPubMed
Dorjnamjaa, D. & Bat-Ireedui, Y. A., 1991. Dokembriy Mongolii. Akademia Nauk MPR, Geological Institute (in Russian).Google Scholar
Dorjnamjaaa, D. & Bat-Ireedui, Y. A., Dashdavaa, Z. & Soelmaa, D., 1993. Precambrian—Cambrian Geology of the Dzavkhan Zone. Unpublished excursion guidebook. Earth Sciences Department, Oxford, 36 pp.Google Scholar
Drozdova, N. A., 1980. Algae in Lower Cambrian mounds of western Mongolia. Trudy Sovmestnaya Sovetsko—Mongol’skaya Paleontologicheskaya Ekspeditsiya, Moscow, 10, 1140 (in Russian).Google Scholar
Endonzhamts, Zh. & Lkhasuren, B., 1988. Stratigraphy of the transitional beds between the Precambrian and Cambrian in the Zavkhan zone. Pozdniy Dokembriy i Ranniy Paleozoy Sibiri. Riphey i Vend. Izdatelstvo Instituta Geologii i Geophiziki, Novosibirsk, pp. 150–62 (in Russian).Google Scholar
Esakova, N. V. & Zhegallo, E. A., 1996. Stratigrafaya i fauna nizhnego Kembriya Mongolii (Lower Cambrian stratigraphy and fauna of Mongolia). Sovmestnaya Sovetsko—Mongol’skaya Paleontologicheskaya Ekspeditsiya, Moscow, 46, 208 pp. (in Russian).Google Scholar
Fairchild, I. J. & Spiro, B., 1987. Petrological and isotopic implications of some contrasting Late Precambrian carbonates, E. Spitsbergen. Sedimentology 34, 973–89.CrossRefGoogle Scholar
Fedonkin, M. A., 1987. Paleoichnology of the Precambrian—Cambrian transition in the Russian Platform and Siberia. In Trace Fossils, Small Shelly Fossils and the Precambrian—Cambrian Boundary (eds Landing, E., arbonne, G. M., and Myrow, P.), p. 12. Bulletin of the New York State Museum no. 463.Google Scholar
Friedman, I. & O’Neill, J. R., 1977. Compilation of stable isotope fractionation factors of geochemical interest. In Data of Geochemistry (ed. Fleicher, M.). United States Geological Survey Professional Paper N 440-KK, Washington D.C., 110 pp.Google Scholar
Gao, G. & Land, L. S., 1991. Geochemistry of Cambro-Ordovician Arbuckle limestone, Oklohoma: implications for diagenetic δ18O alteration and secular δ13C and 87Sr/86Sr variation. Geochimica et Cosmochimica Acta 55, 2911–20.CrossRefGoogle Scholar
Gibsher, A. S., Bat-Ireedui, Y. A., Balakhonov, I. G. & Efremenko, D. E., 1991. The Bayan Gol reference section of the Vendian—Lower Cambrian in central Mongolia (subdivision and correlation). In Late Precambrian and Early Palaeozoic of Siberia Siberian Platform and its framework (ed. Khomentovsky, V. V.), pp. 107–20. Novosibirsk: Ob’edinennyy Institut Geologii, Geofiziki iMineralogii, Sibirskoe Otdelenie, Akademiya Nauk SSSR, 151 pp.(in Russian).Google Scholar
Gibsher, A. S. & Khomentovsky, V. V., 1990. The sections of the Tsagan Oloom and Bayan Gol formations of the Vendian—Lower Cambrian in the Dzabkhan zone of Mongolia. Pozdniy Dokembriy i Ranniy Paleozoy Sibiri. Voprosy Regional’noy Stratigraphii, pp. 7991. Novosibirsk: Izdateltsvo Instituta Geologii i Geofiziki(in Russian).Google Scholar
Goldring, R. & Jensen, S., 1996. Trace fossils and biofabrics at the Precambrian—Cambrian boundary interval in western Mongolia. Geological Magazine 133, 403–15.CrossRefGoogle Scholar
Gorokhov, I. M., Semikhatov, M. A., Basakov, A. V., Kuyavin, E. P., Mel’Nikov, N. N., Sochava, A. V. & Turchenko, T. L., 1995. Sr isotopic Composition in Riphean, Vendian and Lower Cambrian carbonates from Siberia. Stratigraphy and Geological Correlation 3, 128.Google Scholar
Grant, S. W. F., 1992. Carbon isotopic vital effect and organic diagenesis, Lower Cambrian Forteau Formation, northwest Newfoundland: implications for δ13C chemostratigraphy. Geology 20, 243–6.2.3.CO;2>CrossRefGoogle Scholar
Hamdi, B., 1989. Stratigraphy and palaeontology of the Late Precambrian to early Cambrian in the Alborz Mountains, northern Iran. Geological Survey of Iran, Report 59, 41 pp., 6 pls.Google Scholar
Hudson, J. D., 1977. Stable isotopes and limestone lithification. Journal of the Geological Society, London 136, 157–64.Google Scholar
Ilyin, A. V., 1982. Geological development of Southern Siberia and Mongolia in the late Precambrian—Cambrian. Moscow: Nauka, 116 pp. (in Russian).Google Scholar
Iyer, S. S., Babinski, M., Krouse, H. R. & Chemale, F. Jr, 1995. Highly 13C-enriched carbonate and organic matter in the Neoproterozoic sediments of the Bambui Group, Brazil. Precambrian Research 73, 271–82.CrossRefGoogle Scholar
Irwin, H., Curtis, C. & Coleman, M., 1977. Isotopic evidencefor source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269, 209–13.CrossRefGoogle Scholar
Kaufman, A. J., Hayes, J. M., Knoll, A. H. & Germs, G. J. B., 1991. Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia:stratigraphic variation and the effects of diagenesis and metamorphism. Precambrian Research 49, 301–27.CrossRefGoogle ScholarPubMed
Kaufman, A. J., Jacobsen, S. B. & Knoll, A. H., 1993. The Vendian record of Sr and C isotopic variations in seawater: implications for tectonics and palaeoclimate. Earth and Planetary Science Letters 120, 409–30.CrossRefGoogle Scholar
Kaufman, A. J. & Knoll, A. H., 1995. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Research 73, 27–19.CrossRefGoogle ScholarPubMed
Kaufman, A. J., Knoll, A. H., Semikhatov, M. A., Grotzinger, J. P., Jacobsen, S. B. & Adams, W., 1996. Isotopic chemostratigraphy of Proterozoic—Cambrian boundary beds in the western Anabar region, Northern Siberia. Geological Magazine 133, in press.CrossRefGoogle Scholar
Kepezhinskas, P. K., Kepezhinskas, K. B. & Pukhtel, I. S., 1991. Lower Paleozoic oceanic crust in Mongolian Caledonides: Sm/Nd isotope and trace element data. Geophysical Research Letters 18(7), 1301–4.CrossRefGoogle Scholar
Khomentovsky, V. V. & Gibsher, A. S., 1996. The Neoproterozoic—lower Cambrian in northern Govi-Altay, western Mongolia: regional setting, lithostratigraphy and biostratigraphy. Geological Magazine 133, 371–90.CrossRefGoogle Scholar
Khomentovsky, V. V. & Karlova, G. A., 1993. Biostratigraphy of the Vendian—Cambrian beds and the lower Cambrian boundary in Siberia. Geological Magazine 130, 2945.CrossRefGoogle Scholar
Kirschvink, J., Magaritz, M., Ripperdan, R. L., Zhuravlev, A. Yu. & Rozanov, A. Yu., 1991. The Precambrian/Cambrian boundary: magnetostratigraphy and carbon isotopes resolve correlation problems between Siberia, Morocco and south China. GSA Today 1, 6971, 87, 91.Google Scholar
Knoll, A. H., Grotzinger, J. P., Kaufman, A. J. & Kolosov, P., 1995. Integrated approaches to terminal Proterozoic stratigraphy: an example from the Olenek Uplift, north-eastern Siberia. Precambrian Research 73, 251–70.CrossRefGoogle Scholar
Knoll, A. H., Hayes, J. M., Kaufman, A. J., Swett, K. & Lambert, I. B., 1986. Secular cariations in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature 321, 832–8.CrossRefGoogle Scholar
Knoll, A. H., Kaufman, A. J., Semikhatov, M. A., Grotzinger, J. P. & Adams, W., 1995. Sizing up the sub-Tommotian unconformity in Siberia. Geology 23, 1139–43.2.3.CO;2>CrossRefGoogle ScholarPubMed
Korobov, M. N., 1980. Lower Cambrian biostratigraphy and miomeroid trilobites of the Lower Cambrian of Mongolia. In Lower Cambrian and Carboniferous biostratigraphy of Mongolia (eds Menner, V. V., and Meyen, S. V.), pp. 601–15. Trudy Sovmestnoy Sovetsoko-Mongol’skoy Paleontologicheskoy Ekspeditsii, Moscow 26, (in Russian).Google Scholar
Korobov, M. N. & Missarzhevsky, V. V., 1977. On the Cambrian and Precambrian boundary layers of western Mongolia. In Palaeozoic Invertebrata of Mongolia (eds Tartarinov, L. P., and others), pp. 79. Trudy Sovmestnaya Sovetsko-Mongol’skaya Paleontologicheskaya Ekspeditsiya, Moscow 5, (in Russian).Google Scholar
Lambert, I. B., Walter, M. R., Wenglong, Zang, Lu, songnian & Ma, Guogan. 1987. Palaeoenvironment and carbon isotope stratigraphy of upper Proterozoic carbonates of the Yangtze Platform. Nature 325, 140–2.CrossRefGoogle Scholar
Lesnov, F. P., 1993. Multistage formation of mafic—ultramafic plutonic complexes of ophiolite associations. Fourth International Symposium on Geodynamic evolution of Palaeo-Asian ocean, pp. 97–9. IGCP Project 282 Report no. 4. Novosibirsk.Google Scholar
Lindsay, J. F., Brasier, M. D., Dorjnamjaa, D., Goldring, R., Kruse, P. D. & Wood, R. A., 1996 a. Facies and sequence controls on the appearance of the Cambrian biota in southwestern Mongolia: implications for Precambrian—Cambrian boundary. Geological Magazine 133, 417–28.CrossRefGoogle Scholar
Lindsay, J. F., Brasier, M. D., Shields, G., Khomentovsky, V. V. & Bat-Ireedui, Y. A., 1996 b. Glacial facies associations in a Neoproterozoic back-arc setting, Zavkhan Basin, western Mongolia. Geological Magazine 133, 391402.CrossRefGoogle Scholar
Magaritz, M., 1989. 13C minima follow extinction events: a clue to faunal radiation. Geology 17, 337–40.2.3.CO;2>CrossRefGoogle Scholar
Magaritz, M., Holser, W. T. & Kirchvink, J. L., 1986. Carbon-isotope events across the Precambrian—Cambrian boundary on the Siberian Platform. Nature 320, 258–9.CrossRefGoogle Scholar
Magaritz, M., Kirschvink, J. L., Latham, A. J., Zhuravlev, A. Yu. & Rozanov, A. Yu., 1991. Precambrian/Cambrian boundary problem: carbon isotope correlations for Vendian and Tommotian time between Siberia and Morocco. Geology 19, 847–50.2.3.CO;2>CrossRefGoogle Scholar
Markova, N. P., 1975. Stratigraphy of the Lower and Middle Paleozoic of Western Mongolia. Moscow: Nauka, 120 pp.(in Russian).Google Scholar
Markova, N. P., Korobov, N. M. & Zhuravleva, Z. A., 1972. On the problem of the Vendian—Cambrian of the south-western part of Mongolia. Byulleten’ Moskovskogo Obschchestva Ispytateley Prirody, Otdelenie Geologicheskiy 47, 5770 (in Russian).Google Scholar
Missarzhevsky, V. V., 1977. Conodonts (?) and phosphatic problematica from the Cambrian of Mongolia and Siberia. In Palaeozoic Invertebrata of Mongolia (eds Tartarinov, L. P., and others), pp. 1019. Trudy Sovmestnaya Sovetsko-Mongol’skaya Paleontologicheskaya Ekspeditsiya, Moscow 5 (in Russian).Google Scholar
Missarzhevsky, V. V., 1982. Raschlenenie i korrelyatsia pogranichnykh tolshch dokembriya i kembriya ponekotorym problematichnym gruppam skeletnykh okamenelostey. Byulleten’ Moskovskogo Obschchestva Ispyateley Prirody, Otdelenie Geologicheskiy 57, 5268.Google Scholar
Narbonne, G. M., Kaufman, A. J. & Knoll, A. H., 1994. Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada: implications for Neoproterozoic correlations and early evolution of animals. Bulletin of the Geological Society of America 106, 1281–92.2.3.CO;2>CrossRefGoogle ScholarPubMed
Nicholas, C. J., 1996. The Sr isotope evolution of the oceans during the ‘Cambrian Explosion’. Journal of the Geological Society, London, 153, 243–54.CrossRefGoogle Scholar
Pelechaty, S. M., Kaufman, A. K. & Grotzinger, J. P. In press. Evaluation of δ13C isotope stratigraphy for intrabasinal correlation: Vendian strata of the Olenek uplift and Kharaulakh Mountains, Siberian platform, Russia. Bulletin of the Geological Society of America.Google Scholar
Pokrovsky, B. G. & Missarzhevsky, V. V., 1993. Isotopic correlation of Precambrian and Cambrian of the Siberian platform. Doklady Akademy Nauk 329, 768–71 (in Russian).Google Scholar
Preiss, W., 1976. The biostratigraphic potential of Precambrian stromatolites. Precambrian Research 5, 207–19.CrossRefGoogle Scholar
Raaben, M. Y. & Zabrodin, V. Y., 1969. Biostratigraphic characteristics of the Upper Riphean in the Arctic. Doklady Akademii Nauk, SSR 184, 676–9.Google Scholar
Ripperdan, R., 1994. Global variations in carbon isotope composition during the latest Neoproterozoic and earliest Cambrian. Annual Review of Earth and Planetary Sciences 22, 385417.CrossRefGoogle Scholar
Rosenbaum, I. & Sheppard, S. M. F., 1986. An isotopic study of siderites, dolomites and ankerites at high temperature. Geochimica et Cosmochimica Acta 50, 1147–50.CrossRefGoogle Scholar
Rozanov, A. Yu., 1992. Some problems concerning the Precambrian—Cambrian transition and the Cambrian faunal radiation. Journal of the Geological Society, London 149, 593–8.CrossRefGoogle Scholar
Sayutina, T. A., 1985. Cribricyaths of the lower Cambrian from Mongolia. In Problematics of the Precambrian and Palaeozoic (eds Sokolov, B.S. and Zhuravleva, I. T.), pp. 3844. Transactions of the Institute of Geology and Geophysics, Siberian Branch, USSR Academy of Sciences 632, (in Russian).Google Scholar
Şengör, A. M. C, Natal’in, B. A. & Burtman, V. S., 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 364, 299307.CrossRefGoogle Scholar
Sheppard, S. M. F. & Schwarcz, H. P., 1970. Fractionation of carbon and oxygen isotopes and magnesium between coexisting metamorphic calcite and dolomite. Contributions to Mineralogy and Petrology 26, 161–98.CrossRefGoogle Scholar
Smith, L. H., Kaufman, A. J., Knoll, A. H. & Link, P. K., 1994. Chemostratigraphy of predominantly siliciclastic Neoproterozoic successions: a case study of the Pocatello Formation and Lower Brigham Group, Idaho, USA. Geological Magazine 131, 301–14.CrossRefGoogle ScholarPubMed
Steiger, R. H. & Jaeger, E., 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.CrossRefGoogle Scholar
Ushatinskaya, G. T., 1993. New genus of paterinid (brachiopod) from the Lower Cambrian of western Mongolia. Paleontological Zhurnal 1, 115–18 (in Russian).Google Scholar
Ushatinskaya, G. T., 1995. The earliest Ungulates. Rossiyskaya Akademiya Nauk, Paleontologicheskaya Institut, Trudy 262, 91 pp. (in Russian).Google Scholar
Vidal, G., Moczydlowska, M. & Rudavskaya, V. R., 1995. Constraints on the early Cambrian radiatio and correlation of the Tommotian and Nemakit–Daldynian regional stages of eastern Siberia. Journal of the Geological Society, London 152, 499510.CrossRefGoogle Scholar
Voronin, Yu. I., Voronova, L. G., Drozdova, N. A., Zhuravlev, A. Yu., Rozanov, A. Yu., Sayutina, T. A. & Fonin, V. D., 1983. Precambrian—Cambrian deposits of the Zuune Arts section in Western Mongolia. Byulleten’ Moskovskogo Obschestva Ispytateley Prirody, Otdel Geologicheskiy 58, 5366 (in Russian).Google Scholar
Voronin, Yu. I., Voronova, L. G., Grigor’eva, N. V., Drozdova, N. A., Zhegallo, E. A., Zhuravlev, A. Yu., Ragozina, A. L., Rozanov, A. Yu., Sayutina, T. A., Sysoev, V. A. & Fonin, V. D., 1982. The Precambrian/Cambrian boundary in the geosynclinal areas (the reference section of Salaany-Gol, MPR). Trudy Sovmestnaya Sovetsko-Mongol’skaya Paleontologicheskaya Ekspeditsiya, Moscow 18, 180 pp. (in Russian).Google Scholar
Voronova, L. G., Voronin, Yu. I., Drozdova, N. A., Esakova, N. V., Zhegallo, E. A., Zhuravlev, A. Yu., Luchinina, V. A., Meshkova, N. P., Ragozina, A. L., Sayutina, T. A. & Fonin, V. D., 1986. Organic remains in the Lower Cambrian strata of the Zavkhan and Khungiy interfluve (Mongolia). Akademiya Nauk SSSR, Sibirskoe Otdelinie, Institut Geologii i Geofiziki, Trudy 669, 163–8 (in Russian).Google Scholar
Walters, H. I., Claypool, I. G. E. & Philip, C. W., 1972. Reaction rate and 18O acid preparation method. Geochimica et Cosmochimica Acta 36, 120–40.CrossRefGoogle Scholar
Wood, R., Zhuravlev, A. Yu. & Chimed, Tseren A., 1993. The ecology of Lower Cambrian buildups from Zuune Arts, Mongolia: implications for early metazoan reef evolution. Sedimentology 40, 829–58.CrossRefGoogle Scholar
Zhegallo, L. & Zhuravlev, A. Yu., 1991. Guidebook for the International excursion to the Vendian—Cambrian deposits of the Dzabkhan Zone of Mongolia. Unpublished guidebook, Palaeontological Institute, Moscow, 24 pp.Google Scholar