Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T01:26:52.306Z Has data issue: false hasContentIssue false

Interpretation of the regional gravity and magnetic surveys of Wales, using shaded relief and Euler deconvolution techniques

Published online by Cambridge University Press:  01 May 2009

A. J. W. McDonald
Affiliation:
Natural Environment Research Council, British Geological Survey, Keyworth, Nottingham NG12 5GG, U.K.
C. J. N. Fletchert
Affiliation:
Natural Environment Research Council, British Geological Survey, Bryn Eithyn Hall, Llanfarian, Aberystwyth SY23 4BY, U.K.
R. M. Carruthers
Affiliation:
Natural Environment Research Council, British Geological Survey, Keyworth, Nottingham NG12 5GG, U.K.
D. Wilson
Affiliation:
Natural Environment Research Council, British Geological Survey, Bryn Eithyn Hall, Llanfarian, Aberystwyth SY23 4BY, U.K.
R. B. Evans
Affiliation:
Natural Environment Research Council, British Geological Survey, Keyworth, Nottingham NG12 5GG, U.K.

Abstract

Regional gravity and aeromagnetic data of Wales have been processed using a variety of techniques. Image processing has greatly assisted qualitative interpretation, whilst automated procedures have provided additional quantitative information. The shaded relief images emphasize gradients in the potential fields, and are useful for displaying strong linear features. The Euler deconvolution method produces plotted solution maps, which define the position of the source of the gravity and magnetic anomalies. Euler solution maps of Wales and the adjacent continental shelf are presented for the first time. These maps are interpreted in relation to the known geology, with special emphasis on the Lower Palaeozoic Welsh Basin. It is proposed that the Euler solutions define a network of fault-bounded blocks within the Precambrian basement.

Type
Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allsop, J. M., Evans, C. J. & Mcdonald, A. J. W. 1991. Visualizing and interpreting 3-D Euler solutions using enhanced computer graphics. Surveys in Geophysics 12, 553–64.CrossRefGoogle Scholar
Baranov, V. 1957. A new method for interpretation of aeromagnetic maps: pseudo-gravimetric anomalies. Geophysics 22, 359–83.CrossRefGoogle Scholar
Blakely, R. G. & Simpson, R. W. 1986. Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics 51, 1494–98.CrossRefGoogle Scholar
Drury, S. A. & Walker, A. S. D. 1987. Display and enhancement of gridded aeromagnetic data of the Solway Basin. International Journal of Remote Sensing 8, 1433–44.CrossRefGoogle Scholar
Dynamic Graphics. 1988. Interactive Surface Modelling, Users Guide (Release 6.9B). Dynamic Graphics Inc., Berkeley, California.Google Scholar
Fitches, W. R. & Campbell, S. G. D. 1987. Tectonic evolution of the Bala Lineament in the Welsh Basin. Geological Journal 22, 131–53.CrossRefGoogle Scholar
Gibbons, W. 1987. Menai Strait fault system: An early Caledonian terrane boundary in North Wales. Geology 15, 744–7.2.0.CO;2>CrossRefGoogle Scholar
Howells, M. F., Reedman, A. J. & Campbell, S. D. G. 1991. Ordovician (Caradoc) marginal basin volcanism in Snowdonia. London: HMSO for the British Geological Survey.Google Scholar
James, D. M. D. & James, J. 1969. The influence of deep fractures on some areas of Ashgillian-Llandoverian sedimentation in Wales. Geological Magazine 106, 562–82.CrossRefGoogle Scholar
Jones, O. T. 1938. On the evolution of a geosyncline. Quarterly Journal of the Geological Society of London 94, lx-ex.Google Scholar
Kokelaar, B. P. 1988. Tectonic controls of Ordovician arc and marginal basin volcanism in Wales. Journal of the Geological Society, London 145, 759–75.CrossRefGoogle Scholar
Kokelaar, B. P., Howells, M. F., Bevins, R. E., Roach, R. A. & Dunkley, P. N. 1984. The Ordovician marginal basin of Wales. In Marginal basin geology (eds Kokelaar, B. P. and Howells, M. F.), pp. 245–69. Geological Society Special Publication no. 16.Google Scholar
Lanczos, C. 1961. Linear Differential Operators. London: Van Nostrand.Google Scholar
McDonald, A. J. W. 1991. The, use and abuse of image analysis in geophysical potential field interpretation. Surveys in Geophysics 12, 531–51.CrossRefGoogle Scholar
Reid, A. B., Allsop, J. M., Granser, H., Millet, A. J. & Somerton, I. W. 1990. Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 55, 8091.CrossRefGoogle Scholar
Shackleton, R. M. 1954. The structural evolution of North Wales. Liverpool and Manchester Geological Journal 1, 741–67.Google Scholar
Smith, I. F. & Royles, C. P. 1989. The digital aeromagnetic survey of Great Britain. British Geological Survey Technical Report WK/89/5, 12 pp.Google Scholar
Smith, R. D. A. 1987. Structure and deformation history of the Central Wales Synclinorium, northeast Dyfed: evidence for a long-lived basement structure. Geological Journal 22, 183–98.CrossRefGoogle Scholar
Thompson, D. T. 1982. EULDPH: A new technique for making computer-assisted depth estimates from magnetic data. Geophysics 47, 31–7.CrossRefGoogle Scholar
Wadge, G. & Snoke, A. W. 1991. Images of the edges of aeromagnetic anomalies as an aid to geological mapping: The case history of Tobago, West Indies. Surveys in Geophysics 12, 515–30.CrossRefGoogle Scholar
Wilkinson, I. & Smith, M. 1988. Basement fractures in North Wales: their recognition and control on Caledonian deformation. Geological Magazine 125, 301–6.CrossRefGoogle Scholar
Woodcock, N. H. 1984. Early Palaeozoic sedimentation and tectonics in Wales. Proceedings of the Geologists' Association 95, 323–35.CrossRefGoogle Scholar
Woodcock, N. H. & Gibbons, W. 1988. Is the Welsh Borderland Fault System a terrane boundary? Journal of the Geological Society, London 145, 915–23.CrossRefGoogle Scholar