Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T09:36:56.872Z Has data issue: false hasContentIssue false

Iron and silica enrichments in the middle Albian neptunian dykes from the High-Tatric Unit, Central Western Carpathians: an indication of hydrothermal activity for an extensional tectonic regime

Published online by Cambridge University Press:  03 March 2016

KRZYSZTOF BĄK*
Affiliation:
Faculty of Geography and Biology, Pedagogical University of Cracow, Podchorążych 2, 30–084 Kraków, Poland
JOANNA KOWALCZYK
Affiliation:
Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30, 30–059 Kraków, Poland
ANNA WOLSKA
Affiliation:
Faculty of Geography and Biology, Pedagogical University of Cracow, Podchorążych 2, 30–084 Kraków, Poland
MARTA BĄK
Affiliation:
Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30, 30–059 Kraków, Poland
LUCYNA NATKANIEC-NOWAK
Affiliation:
Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30, 30–059 Kraków, Poland
*
Author for correspondence: sgbak@cyf-kr.edu.pl

Abstract

Studies dealing with the response of subaqueous volcanic and hydrothermal activities to carbonate sedimentation in hemipelagic environments affected by tectonic processes are comparatively rare. Here, a microfacies record with combined chemical data from the neptunian dykes found at an intrabasinal ridge (Tatric Ridge; Carpathian domain of the Western Tethys), close to a source of alkaline volcanism with possible hydrothermal vents (Zliechov Basin), is presented. The characteristic features of the neptunian dykes, up to 20 cm thick, in the middle Albian echinoderm-foraminiferal limestones (Tatra Mountains, Inner Carpathians) are their red fillings. Microprobe and x-ray diffraction analyses show that this reddish material, partly mixed with sparitic clasts coming from the host limestone, consists mainly of hematite crystals which are associated with low crystalline silica and quartz. The microfacies data suggest that the reddish infillings of the dykes is partly related to dissolution processes inside the fissures that could have taken place during the transport of FeCl3 fluids together with silica gel. The fluids could have been derived from hydrothermal vents occurring along the extensional faults in the neighbouring Zliechov Basin. Rare Earth element (REE) signatures of the reddish infill (i.e. low values of total REE content, chondrite- and Post-Archean Australian Shale-normalized REE + Y patterns with negative Ce anomaly) and a high Y/Ho ratio suggest authigenic removal of REEs from the water column. This suggests that the fissures were open to the sea bottom and were in contact with sea water during their filling.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alt, J. C. 1988. Hydrothermal oxide and nontronite deposits on seamounts in the eastern Pacific. Marine Geology 81, 227–39.Google Scholar
Andrusov, D. 1968. Grundriss der Tektonik der Nördlichen Karpaten. SAV, Bratislava, 188 pp.Google Scholar
Arnaud-Vanneau, A., Arnaud, H., Boisseau, T., Darsac, C., Thieuloy, J. P. & Vieban, F. 1982. Synchronisme des crises biologiques et paléogéographiques dans le Crétacé inférieur du S.E. de la France: un outil pour les corrélations plate-forme-bassin . Géologie Méditerranéenne 9, 153–65.Google Scholar
Arnaud-Vanneau, A., Arnaud, H., Charollais, J., Conrad, M. A., Cotillon, P., Ferry, S., Masse, J.-P. & Peybernes, B. 1979. Paléogéographie des calcaires urgoniens du Sud de la France. Geobios Mémoire Spécial 3, 363–83.Google Scholar
Ascoli, P. 1976. Foraminiferal and ostracod biostratigraphy of the Mesozoic–Cenozoic, Scotian-Shelf, Atlantic Canada. Maritime Sediments, Special Publication 1, 653771.Google Scholar
Babinot, J.-F., Barbaroux, L., Tronchetti, G., Philip, J., Canerot, J., Kouyoumontzakis, G. & Redondo, C. 1991. Les paléoenvironnements margino-littoraux de la plate-forme albo-cénomanienne du Bas-Aragon (Ibérides septentrionales), Espagne. Bulletin de la Société Géologique de France 162, 753–62.Google Scholar
Bąk, K. 2007. Organic-rich and manganese sedimentation during the Cenomanian-Turonian boundary event in the Outer Carpathian Basin, a new record from the Skole Nappe, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology 256, 2146.Google Scholar
Bąk, K. 2015. Late Albian Foraminifera from record of carbonate platform drowning on the Tatric Ridge, a part of the Carpathian domain: stratigraphic and palaeoenvironmental inferences. Carpathian Journal of Earth and Environmental Sciences, 10 (4), 237–50.Google Scholar
Bąk, K. & Bąk, M. 2013. Late Albian through Cenomanian foraminiferal assemblage from the youngest deposits of Tatra Mountains, Central Western Carpathians; biostratigraphical and palaeoecological aspects. Acta Geologica Polonica 63, 223–37.Google Scholar
Bąk, M., Bąk, K., Górny, Z. & Stożek, B. 2015. Evidence of bacteriogenic iron and manganese oxyhydroxides in Albian–Cenomanian marine sediments of the Carpathian realm (Poland). Annales Societatis Geologorum Poloniae 85, 371–85.Google Scholar
Bau, M. 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology 123, 323–33.Google Scholar
Bellanca, A., Masetti, D. & Neri, R. 1997. Rare earth elements in limestone/marlstone couplets from the Albian-Cenomanian Cismon section (Venetian region, northern Italy): assessing REE sensitivity to environmental changes. Chemical Geology 141, 141–52.Google Scholar
Bertram, C. J. & Elderfield, H. 1993. The geochemical balance of the rare earth elements and neodymium isotopes in the oceans. Geochimica et Cosmochimica Acta 57, 1957–86.Google Scholar
Bonatti, E., Kraemer, T. & Ryde, U. H. 1972. Classification and genesis of Fe-Mn deposits. In Ferromanganese Deposits on the Ocean Floor (ed. Horn, D. R.), pp. 149–65. New York: Arden House.Google Scholar
Bonatti, E., Zerbi, M., Kay, R. & Rydell, H. S. 1976. Metalliferous deposits from the Apennine ophiolites: Mesozoic equivalents of modern deposits from oceanic spreading centre. Geological Society of America Bulletin 87, 8394.Google Scholar
Bryndal, T. 2014. Identification of small catchments prone to flash flood generation in the Polish Carpathians. Kraków: Wydawnictwo Naukowe Uniwersytetu Pedagogicznego. Prace Monograficzne Uniwersytetu Pedagogicznego, 690, 180 pp.Google Scholar
Bujnovský, A., Kantor, J. & Vozäft, J. 1981. Radiometric dating of Mesozoic basic eruptive rocks of the Krížna Nappe in the NW part of the Low Tatra. Geologica Carpathica 32, 221–30.Google Scholar
Byrne, R. H. & Kim, K. H. 1990. Rare earth element scavenging in seawater. Geochimica et Cosmochimica Acta 54, 2645–56.Google Scholar
Caron, M. 1985. Cretaceous planktonic foraminifera. In Plankton Stratigraphy (eds Bolli, H. M., Saunders, J. B. & Perch-Nielsen, K.), pp. 1786. Cambridge: Cambridge University Press.Google Scholar
Dando, P. R., Stüben, D. & Varnavas, S. P. 1999. Hydrothermalism in the Mediterranean Sea. Progress in Oceanography 44, 333–67.Google Scholar
De Baar, H. J. W., Bacon, M. P. & Brewer, P. G. 1985. Rare earth elements in the Pacific and Atlantic oceans. Geochimica et Cosmochimica Acta 49, 1943–59.Google Scholar
De Carlo, E. H., Wen, X.-Y. & Irving, M. 1998. The influence of redox reactions on the uptake of dissolved Ce by suspended Fe and Mn oxide particles. Aquatic Geochemistry 3, 357–89.Google Scholar
Dekov, V. M., Petersen, S., Garbe-Schonberg, C. D., Kamenov, G. D., Perner, M., Kuzmann, E. & Schmidt, M. 2010. Fe-Si-oxyhydroxide deposits at a slow spreading centre with thickened oceanic crust: the Lilliput hydrothermal field (9o33′S, Mid-Atlantic Ridge). Chemical Geology 278, 186200.CrossRefGoogle Scholar
Elderfield, H. & Greaves, M. J. 1982. The rare earth elements in seawater. Nature 96, 58214–9.Google Scholar
Fitzsimons, M. F., Dando, P. R., Hughes, J. A., Thiermann, F., Akoumianaki, I. & Pratt, S. M. 1997. Submarine hydrothermal brine seeps off Milos, Greece: observations and geochemistry. Marine Chemistry 57, 325–40.Google Scholar
Fortin, D., Ferris, F. G. & Scott, S. D. 1998. Formation of Fe-silicates and Fe-oxides on bacterial surfaces in samples collected near hydrothermal vents on the Southern Explorer Ridge in the northeast Pacific Ocean. American Mineralogist 83, 1399–408.Google Scholar
Froitzheim, N., Plašienka, D. & Schuster, R. 2008. Alpine tectonics of the Alps and Western Carpathians. In The Geology of Central Europe. Vol. 2: Mesozoic and Cenozoic (ed. McCann, T.), pp. 1141–232. London: Geological Society's Publishing House.Google Scholar
Gale, A., Bown, P., Caron, M., Crampton, J., Crowhurst, S. J., Kennedy, W. J., Petrizzo, M. R. & Wray, D. S. 2011. The uppermost Middle and Upper Albian succession at the Col de Palluel, Hautes-Alpes, France: An integrated study (ammonites, inoceramid bivalves, planktonic foraminifera, nannofossils geochemistry, stable oxygen and carbon isotopes, cyclostratigraphy). Cretaceous Research 32, 59130.Google Scholar
German, C. R. & Elderfield, H. 1990. Rare earth elements in the NW Indian Ocean. Geochimica et Cosmochimica Acta 54, 1929–40.Google Scholar
Grabowski, J. 1997. Paleomagnetic results from the cover (High Tatric) unit and nummulitic Eocene in the Tatra Mts (Central West Carpathians, Poland) and their tectonic implications. Annales Societatis Geologorum Poloniae 67, 1323.Google Scholar
Greaves, M. J., Elderfield, H. & Sholkovitz, E. R. 1999. Aeolian sources of rare earth elements to the Western Pacific Ocean. Marine Chemistry 68, 31–8.Google Scholar
Guzik, K. & Jaczynowska, W. (eds) 1978. Geological Map of the Tatra Mountains, scale 1:10,000: Kościelec Sheet (B4). Warszawa: Wydawnictwa Geologiczne.Google Scholar
Haley, B. A., Klinkhammer, G. P. & Mix, C. 2005. Revisiting the rare earth elements in foraminiferal tests. Earth and Planetary Science Letters 239, 7997.Google Scholar
Harder, H. 1964. Können Eisensäuerlinge die Genese der Lahn-Dill-Erze erklären? Beiträge zur Mineralogie und Petrographie 9, 379422.Google Scholar
Hekinian, R., Hoffert, M., Larque, P., Cheminee, J. L., Stoffers, P. & Bideau, D. 1993. Hydrothermal Fe and Si oxyhydroxide deposits from South Pacific intraplate volcanoes and East Pacific Rise axial and off-axial regions. Economic Geology 88, 2099–121.Google Scholar
Holser, W. T. 1997. Evaluation of the application of rare-earth elements to paleoceanography. Palaeogeography, Palaeoclimatology, Palaeoecology 132, 309–23.Google Scholar
Hovorka, D., Dostál, J. & Spišiak, J. 1999. Geochemistry of the Cretaceous alkali basaltic rocks of the central part of the Western Carpathians (Slovakia). Kryštalinikum 25, 3748.Google Scholar
Hovorka, D. & Spišiak, J. 1981. Hyalobasanites (Limburgites) of Osobitá peak in the Tatra Mts. In Palaeovolcanism in the Western Carpathians (eds Bajaník, Š. & Hovorka, D.), pp. 145–56. Bratislava: Geologicky ústav D. Štúra.Google Scholar
Hovorka, D. & Spišiak, J. 1988. Mesozoic Volcanism of the Western Carpathians (in Slovak with English summary). Bratislava: Veda, 263 pp.Google Scholar
Hu, X., Cheng, W. & Ji, J. 2009. Origin of Cretaceous oceanic Red Beds from the Vispi quarry section, visible reflectance and inorganic geochemistry. In Cretaceous Oceanic Red Beds: Stratigraphy, Composition, Origins and Paleo-Ceanographic and Paleoclimatic Significance (eds Hu, X., Wang, C., Scott, R. W., Wagreich, M. & Jansa, L.), pp. 183–97. SEPM, Tulsa, Special Publication 91.Google Scholar
Ivan, P., Hovorka, D. & Méres, Š. 1999. Riftogenic volcanism in the Western Carpathian geological history: a review. GeoLines 9, 41–7.Google Scholar
Jach, R. & Dudek, T. 2005. Origin of a Toarcian manganese carbonate/silicate deposit from the Krížna Unit, Tatra Mountains, Poland. Chemical Geology 224, 136–52.Google Scholar
Jarvis, I. 1984. Rare earth element geochemistry of Late Cretaceous chalks and phosphorites of Northern France. In Phosphorite (eds Rao, G. V., Dasgupta, S. P., Pant, A. & Choudhuri, R.), pp. 179–90. Udaipur, Rajasthan: Geological Survey of India, Special Publication 17.Google Scholar
Kamber, B. S. & Webb, G. E. 2001. The geochemistry of late Archaean microbial carbonate: implications for ocean chemistry and continental erosion history. Geochimica et Cosmochimica Acta 65, 2509–25.Google Scholar
Kawabe, I., Kitahara, Y. & Naito, K. 1991. Non-chondritic yttrium/holmium ratio and lanthanide tetrad effect observed in pre-Cenozoic limestones. Geochemical Journal 25, 3144.CrossRefGoogle Scholar
Kennedy, C. B., Scott, S. D. & Ferris, F. G. 2003. Characterization of bacteriogenic iron oxide deposits from Axial Volcano, Juan de Fuca Ridge, Northeast Pacific Ocean. Geomicrobiology Journal 20, 124–99.Google Scholar
Kocsis, L., Trueman, C. N. & Palmer, M. R. 2010. Protracted diagenetic alteration of REE contents in fossil bioapatites: direct evidence from Lu–Hf isotope systematic. Geochimica et Cosmochimica Acta 74, 6077–92.Google Scholar
Koeppenkastrop, D. & De Carlo, E. H. 1992. Sorption of rare earth elements from seawater onto synthetic mineral particles: an experimental approach. Chemical Geology 95, 251–63.Google Scholar
Koschinsky, A. & Hein, J. R. 2003. Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation. Marine Geology 198, 331–51.Google Scholar
Kotański, Z. 1961. Tectogénèse et reconstitution de la paléogéographie de la zone haut-tatrique dans les tatras. Acta Geologica Polonica 11, 187412.Google Scholar
Kotański, Z. & Radwański, A. 1959. High-Tatric Tithonian in the Osobita region, its fauna with Pygope diphya and products of the volcanoes, Western Tatra Mts. Acta Geologica Polonica 9, 519–34.Google Scholar
Koutsoukos, E. A. M., Leary, P. N. & Hart, M. B. 1989. Favusella Michael (1972): evidence of ecophenotypic adaptation of a planktonic foraminifer to shallow water carbonate environments during the Mid-Cretaceous. Journal of Foraminiferal Research 19, 324–36.Google Scholar
Krajewski, K. 1981. Pelagic stromatolites from the High-Tatric Albian limestones in the Tatra Mts. Kwartalnik Geologiczny 25, 731–59.Google Scholar
Krajewski, K. 2003. Facies development and lithostratigraphy of the Hightatric mid-Cretaceous (Zabijak Formation) in the Polish Tatra Mountains. Studia Geologica Polonica 121, 81158.Google Scholar
Lécuyer, C., Reynard, B. & Grandjean, P. 2004. Rare earth element evolution of Phanerozoic seawater recorded in biogenic apatites. Chemical Geology 204, 63102.Google Scholar
Lefeld, J. 1968. Stratigraphy and paleogeography of the High-Tatric Lower Cretaceous in the Tatra Mountains. Studia Geologica Polonica 24, 1115.Google Scholar
Lefeld, J. 1974. Middle-Upper Jurassic and Lower Cretaceous biostratigraphy and sedimentology of the Sub-Tatric Succession in the Tatra Mts (Western Carpathians). Acta Geologica Polonica 24, 277–64.Google Scholar
Lefeld, J. 1985. Wysoka Turnia Limestone Formation. In Jurassic and Cretaceous Lithostratigraphic Units in the Tatra Mountains (eds Lefeld, J., Gaździcki, A., Iwanow, A., Krajewski, K. & Wójcik, K.), pp. 33–4. Kraków: Studia Geologica Polonica 84.Google Scholar
Liu, W., Etschmann, B., Brugger, J., Spiccia, L., Foran, G. & Mcinnes, B. 2006. UV-vis spectrophotometric and XAFS studies of ferric chloride complexes in hyper-saline LiCl solutions at 25–90°C. Chemical Geology 231, 326–49.Google Scholar
Luo, Y. R. & Byrne, R. H. 2004. Carbonate complexation of yttrium and the rare earth elements in natural waters in natural water. Geochimica et Cosmochimica Acta 68, 691–9.Google Scholar
Madzin, J., Sýkora, M. & Soták, J. 2014. Stratigraphic position of alkaline volcanic rocks in the autochthonous cover of the High-Tatric Unit (Western Tatra Mts, Central Western Carpathians, Slovakia). Geological Quarterly 58, 163–80.Google Scholar
Masse, J.-P. & Uchman, A. 1997. New biostratigraphic data on the Early Cretaceous platform carbonates of the Tatra Mountains, Western Carpathians, Poland. Cretaceous Research 18, 713–29.Google Scholar
Mazumdar, A., Tanaka, K., Takahashi, T. & Kawabe, I. 2004. Characteristics of rare earth element abundances in shallow marine continental platform carbonates of Late Neoproterozoic successions from India. Geochemical Journal 37, 277–89.Google Scholar
McDonough, W. F. & Sun, S.-S. 1995. Composition of the Earth. Chemical Geology 120, 223–53.Google Scholar
McLennan, S. M. 1989. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Reviews in Mineralogy 21, 169200.Google Scholar
McLennan, S. M. 2001. Relationships between the trace element composition of sedimentary rocks and continental crust. Geochemistry, Geophysics, Geosystems 2, 124.Google Scholar
Michael, F. Y. 1972. Planktonic foraminifera from the Comanchean Series (Cretaceous) of Texas. Journal of Foraminiferal Research 2, 200–20.Google Scholar
Michalík, J. 1994. Lower Cretaceous carbonate platform facies, Western Carpathians. Palaeogeography, Palaeoclimatology, Palaeoecology 111, 263–77.Google Scholar
Michalík, J. 2007. Sedimentary rock record and microfacies indicators of the latest Triassic to mid-Cretaceous tensional development of the Zliechov Basin (Central Western Carpathians). Geologica Carpathica 58, 443–53.Google Scholar
Michalík, J. & Soták, J. 1990. Lower Cretaceous shallow marine buildups in the Western Carpathians and their relationship to pelagic facies. Cretaceous Research 11, 211–27.CrossRefGoogle Scholar
Michalík, J. & Vašíček, Z. 1989. Lower Cretaceous stratigraphy and paleogeography of the Czechoslovakian Western Carpathians. In Cretaceous of the Western Tethys (ed. Wiedmann, J.), pp. 505–23. Proceedings of the 3rd International Cretaceous Symposium, Tübingen 1987. Stuttgart: Schweizerbart.Google Scholar
Mišik, M. 1990. Urgonian facies in the Western Carpathians. Knihovna zemniho plynu a nafty 9a, 2554.Google Scholar
Moffett, J. W. 1990. Microbially mediated cerium oxidation in seawater. Nature 345, 421–3.Google Scholar
Moffett, J. W. 1994. A radiotracer study of cerium and manganese uptake onto suspended particles in Chesapeake Bay. Geochimica et Cosmochimica Acta 58, 695703.Google Scholar
Morycowa, E. & Lefeld, J. 1966. Les Madréporaires des calcaires urgoniens de la série haut-tatrique dans la Tatra Polonaise. Rocznik Polskiego Towarzystwa Geologicznego 36, 519–42.Google Scholar
Nemčok, J., Bezák, V., Janák, M., Kahan, Š., Ryka, W., Kohút, M., Lehotský, I., Wieczorek, J., Zelman, J., Mello, J., Halouzka, R., Rączkowski, W., Kotański, Z. & Reichwalder, P. 1993. Geological Map of Tatra Mts 1:50 000. Bratislava: State Geological Institute of Dionýz Štúr.Google Scholar
Nothdurft, L. D., Webb, G. E. & Kamber, B. S. 2004. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: confirmation of a seawater REE proxy in ancient limestones. Geochimica et Cosmochimica Acta 68, 263–83.Google Scholar
Palmer, M. R. 1985. Rare earth elements in foraminifera tests. Earth and Planetary Science Letters 73, 285–98.Google Scholar
Parekh, P. P., Möller, P., Dulski, P. & Bausch, W. M. 1977. Distribution of trace elements between carbonate and non-carbonate phases of limestone. Earth and Planetary Science Letters 34, 3950.Google Scholar
Passendorfer, E. 1930. Étude stratigraphique et paléointologique du Cretacé de la série hauttatrique darns les Tatras. Prace Państwowego Instytutu Geologicznego 2, 351676.Google Scholar
Passendorfer, E. 1978. Jak powstały Tatry (In Polish, French summary). Warszawa: Wydawnictwa Geologiczne, 305 pp.Google Scholar
Philip, J., Masse, J.-P. & Bessais, H. 1989. Organisation et évolution sedimentaires d'une marge de plate-forme carbonatée: l'Albien-Cénomanien de Tunisie central. Géologie Médittteraneé 16, 155–69.Google Scholar
Picard, S., Lécuyer, C., Barrat, J.-A., Garcia, J.-P., Dromart, G. & Sheppard, S. M. F. 2002. Rare earth element contents of Jurassic fish and reptile teeth and their potential relation to seawater composition (Anglo-Paris Basin, France and England). Chemical Geology 186, 116.Google Scholar
Pichler, T., Veizer, J. & Hall, G. E. M. 1999. The chemical composition of shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea and their effect on ambient seawater. Marine Chemistry 64, 229–52.Google Scholar
Piepgras, D. J. & Jacobsen, S. B. 1992. The behavior of rare Earth elements in seawater: precise determination of variations in the North Pacific water column. Geochimica et Cosmochimica Acta 56, 1851–62.Google Scholar
Piper, D. Z. 1974 a. Rare earth elements in the sedimentary cycle, a summary. Chemical Geology 14, 285304.Google Scholar
Piper, D. Z. 1974 b. Rare earth elements in ferromanganese nodules and other marine phases. Geochimica et Cosmochimica Acta 38, 1007–22.Google Scholar
Piper, D. Z. 1991. Geochemistry of a Tertiary sedimentary phosphate deposit, Baja California Sur, Mexico. Chemical Geology 92, 283316.Google Scholar
Piper, D. Z. & Bau, M. 2013. Normalized Rare Earth Elements in water, sediments, and wine: Identifying sources and environmental redox conditions. American Journal of Analytical Chemistry 4, 6983.Google Scholar
Plašienka, D. 1997. Cretaceous tectonochronology of the Central Western Carpathians, Slovakia. Geologica Carpathica 48, 99111.Google Scholar
Plašienka, D. 1999. Tectochronology and Paleotectonic Model of the Jurassic–Cretaceous Evolution of the Central Western Carpathians (in Slovak with English summary). Bratislava: Veda, 128 pp.Google Scholar
Prokešová, R., Plašienka, D. & Milovský, R. 2012. Structural pattern and emplacement mechanisms of the Krížna cover nappe (Central Western Carpathians). Geologica Carpathica 63, 1332.Google Scholar
Prol-Ledesma, R. M., Canet, C., Torres-Vera, M. A., Forrest, M. J. & Armienta, M. A. 2004. Vent fluid chemistry in Bahía Concepción coastal submarine hydrothermal system, Baja California Sur, Mexico. Journal of Volcanology and Geothermal Research 137, 311–28.Google Scholar
Rabowski, F. 1959. High-Tatric series in Western Tatra. Prace Instytutu Geologicznego 27, 5178.Google Scholar
Reynard, B., Lécuyer, C. & Grandjean, P. 1999. Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions. Chemical Geology 155, 233–41.Google Scholar
Risch, H. 1971. Stratigraphie der höheren Unterkreide der Subbotina, N. N. 1953. Fossil Foraminifera of the USSR, bayrischen Kalkalpen mit Hilfe von Mikrofossilien, Palae- Globigerinidae, Hantkeninidae and Globorotaliidae. Trudy Ontographica, Abt. A 137, 180.Google Scholar
Riveros, P. A. & Dutriyzac, J. E. 1997. The precipitation of hematite from ferric chloride media. Hydrometallurgy 46, 85104.Google Scholar
Roberts, N. L., Piotrowski, A. M., Elderfield, H., Eglinton, T. I. & Lomas, M. W. 2012. Rare earth element association with foraminifera. Geochimica et Cosmochimica Acta 94, 5771.Google Scholar
Rősier, W., Lutze, G. F. & Pflaumann, U. 1979. Some Cretaceous planktonic formaminifers (Favusella) of DSDP Site 397 (eastern North Atlantic). In Proceedings of the Deep Sea Drilling Program, Scientific Results, Leg 47 (eds von Rad, U., Ryan, W. B. F., Arthur, M. A. et al.), pp. 273–81. Texas A & M University, Ocean Drilling Program, College Station, TX, United States, 47, Part 1.Google Scholar
Savelli, C., Marani, M. & Gamberi, F. 1999. Geochemistry of metalliferous, hydrothermal deposits in the Aeolian arc Tyrrhenian Sea. Journal of Volcanology and Geothermal Research 88, 305–23.Google Scholar
Sholkovitz, E. 1988. Rare earth elements in the North Atlantic Ocean, Amazon Delta and East China Sea: reinterpretation of terrigenous input patterns to the oceans. American Journal of Science 288, 236–81.Google Scholar
Sholkovitz, E., Landing, W. M. & Lewis, B. L. 1994. Ocean particle chemistry: the fractionation of rare earth elements between suspended particles and seawater. Geochimica et Cosmochimica Acta 58, 1576–80.Google Scholar
Sholkovitz, E., Shaw, T. J. & Schneider, D. L. 1992. The geochemistry of rare earth elements in the seasonally anoxic water column and porewaters of Chesapeake Bay. Geochimica et Cosmochimica Acta, 56, 3389–402.Google Scholar
Sholkovitz, E. & Shen, G. T. 1995. The incorporation of rare-earth elements in modern coral. Geochimica et Cosmochimica Acta 59, 2749–56.Google Scholar
Spišiak, J., Arvensis, M., Linkešová, M., Pitoňák, P. & Caňo, F. 1991. Basanite dyke in granitoids near Dúbrava, Nízke Tatry Mts, Central Slovakia. Mineralia Slovaca 23, 339–45 (in Slovak).Google Scholar
Spišiak, J. & Balogh, K. 2002. Mesozoic alkali lamprophyres in Variscan granitoids of Malé Karpaty and Nizke Tatry mountains - geochronology and geochemistry. Geologica Carpathica 53, 295301.Google Scholar
Spišiak, J. & Hovorka, D. 1997. Petrology of Western Carpathians Cretaceous primitive alkaline volcanics. Geologica Carpathica 48, 113–21.Google Scholar
Spišiak, J., Plašienka, D., Bucová, J., Mikuš, T. & Uher, P. 2011. Petrology and palaeotectonic setting of Cretaceous alkaline basaltic volcanism in the Pieniny Klippen Belt (Western Carpathians, Slovakia). Geologica Carpathica 55, 2748.Google Scholar
Staniszewska, A. & Ciborowski, T. 2000. Lower Cretaceous breccia from autochthonous High-Tatric Succession in Western Tatra Mts (southern Poland). Przegląd Geologiczny 48, 246–50 (in Polish with English summary).Google Scholar
Tarasov, V. G., Gebruk, A. V., Mironov, A. N. & Moskalev, L. I. 2005. Deep-sea and shallow-water hydrothermal vent communities: two different phenomena? Chemical Geology 224, 539.Google Scholar
Tarasov, V. G., Propp, M. V., Propp, L. N., Zhirmunsky, A. V., Namsaraev, B. B., Gorlenko, V. M. & Starynin, D. A. 1990. Shallow-water gasohydrothermal vents of Ushishir volcano and the ecosystem of Kraternaya Bight (the Kurile Islands). Marine Ecology 11, 123.Google Scholar
Taylor, S. R. & McLennan, S. M. 1985. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Carlton: Blackwell Scientific Publication, 312 pp.Google Scholar
Wang, Y. L., Liu, Y.-G. & Schmitt, R. A. 1986. Rare earth element geochemistry of South Atlantic deep sea sediments: Ce anomaly change at ~ 54 My. Geochimica et Cosmochimica Acta 50, 1337–55.CrossRefGoogle Scholar
Webb, G. E. & Kamber, B. S. 2000. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy. Geochimica et Cosmochimica Acta 64, 1557–65.Google Scholar
Zeng, Z., Ouyang, H., Yin, X., Chen, S., Wang, X. & Wu, L. 2012. Formation of Fe–Si–Mn oxyhydroxides at the PACMANUS hydrothermal field, Eastern Manus Basin: Mineralogical and geochemical evidence. Journal of Asian Earth Sciences 60, 130–46.CrossRefGoogle Scholar