Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T22:24:58.208Z Has data issue: false hasContentIssue false

The Ladinian–Carnian conodont fauna at Yize, Yunnan, southwestern China, with implications for conodont palaeoecology and palaeogeography

Published online by Cambridge University Press:  06 February 2023

Zaitian Zhang
Affiliation:
Wuhan Centre, China Geological Survey, Wuhan 430205, People’s Republic of China State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, People’s Republic of China State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, CAS, Nanjing 210008, People’s Republic of China
Yadong Sun*
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, People’s Republic of China GeoZentrum Nordbayern, Universität Erlangen-Nürnberg, Schlossgarten 5, Erlangen 91054, Germany
*
Author for correspondence: Yadong Sun, Email: yadong.sun@cug.edu.cn

Abstract

Subdivisions of Ladinian–Carnian boundary beds and the lower Carnian strata in South China are challenging owing to a paucity of west Tethyan ammonoids. We investigated a conodont fauna in a continuous section at Yize in eastern Yunnan Province to provide a biostratigraphic solution. Five genera and 24 conodont species are recognized, and five conodont zones are established. The zones are, in ascending order, the Paragondolella inclinata Zone, the Quadralella polygnathiformis Zone, the Quadralella praelindae Zone, the Quadralella auriformis Zone and the Quadralella robusta Zone. The Ladinian–Carnian boundary is provisionally defined by the first occurrences of Quadralella polygnathiformis and Quadralella intermedia in the cherty limestone member of the Zhuganpo Formation. Regional correlations via conodont biostratigraphy indicate that the Zhuganpo Formation is probably diachronous, with a maximal range spanning the upper Ladinian to the lower Carnian. Amongst all common late Ladinian – early Carnian conodont genera, Paragondolella, Quadralella and Mazzaella are probably cosmopolitan. Budurovignathus was restricted to a few basins and probably preferred offshore or deep-water environments.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balini, M, Germani, D, Nicora, A and Rizzi, E (2000) Ladinian/Carnian ammonoids and conodonts from the classic Schilpario-Pizzo Camino area (Lombardy): revaluation of the biostratigraphic support to chronostratigraphy and paleogeography. Rivista Italiana di Paleontologia e Stratigrafia 106, 1958.Google Scholar
Balini, M and Jenks, JF (2007) The Trachyceratidae from South Canyon (Central Nevada): record, taxonomic problems and stratigraphic significance for the definition of the Ladinian-Carnian boundary. In The Global Triassic (eds Lucas, SG and Spielmann, JA), pp. 1422. New Mexico Museum of Natural History and Science Bulletin 41.Google Scholar
Balini, M, Jenks, JF, McRoberts, CA and Orchard, MJ (2007) The Ladinian-Carnian boundary succession at South Canyon (New Pass Range, Central Nevada). In Triassic of the American West (eds Lucas, SG and Spielmann, JA), pp. 127–38. New Mexico Museum of Natural History and Science Bulletin 40.Google Scholar
Balini, M, Lucas, SG, Jenks, JF and Spielmann, JA (2010) Triassic ammonoid biostratigraphy: an overview. In The Triassic Timescale (ed. Lucas, SG), pp. 221–62. Geological Society of London, Special Publication no. 334.Google Scholar
Benton, MJ, Forth, J and Langer, MC (2014) Models for the rise of the dinosaurs. Current Biology 24, R87R95.CrossRefGoogle ScholarPubMed
Benton, MJ, Zhang, Q, Hu, S, Chen, Z-Q, Wen, W, Liu, J, Huang, J, Zhou, C, Xie, T and Tong, J (2013) Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo-Triassic mass extinction. Earth-Science Reviews 125, 199243.CrossRefGoogle Scholar
Bhargava, ON, Krystyn, L, Balini, M, Lein, R and Nicora, A (2004) Revised litho- and sequence stratigraphy of the Spiti Triassic. Albertiana 30, 2139.Google Scholar
Budurov, K (1975) Paragondoella foliata sp. n (Conodonta) von der Trias des Ost-Balkans. Review of the Bulgarian Geological Society 36, 7981.Google Scholar
Budurov, KJ, Gupta, V, Sudar, MN and Buryi, GJ (1985) Conodont zonation, biofacies and provinces in the Triassic. Geological Society of India 26, 8494.Google Scholar
Budurov, K and Stefanov, S (1965) Gattung Gondolella aus der Trias Bulgariens. Doklady Bolgarskoy Akademiya Nauk, Série Paléontologie 7, 115–27.Google Scholar
Budurov, KJ and Sudar, MN (1990) Late Triassic conodont stratigraphy. Courier Forschungsinstitut Senckenberg 118, 203–39.Google Scholar
Channell, JET, Kozur, HW, Sievers, T, Mock, R, Aubrecht, R and Sykora, M (2003) Carnian–Norian biomagnetostratigraphy at Silická Brezová (Slovakia): correlation to other Tethyan sections and to the Newark Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 191, 65109.CrossRefGoogle Scholar
Chen, Z-Q and Benton, MJ (2012) The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geoscience 5, 375–83.CrossRefGoogle Scholar
Chen, YL, Joachimski, MM, Richoz, S, Krystyn, L, Aljinović, D, Smirčić, D, Kolar-Jurkovšek, T, Lai, XL and Zhang, ZF (2021) Smithian and Spathian (Early Triassic) conodonts from Oman and Croatia and their depth habitat revealed. Global and Planetary Change 196, 103362. doi: 10.1016/j.gloplacha.2020.103362.CrossRefGoogle Scholar
Chen, YL, Krystyn, L, Orchard, MJ, Lai, XL and Richoz, S (2015) A review of the evolution, biostratigraphy, provincialism and diversity of Middle and early Late Triassic conodonts. Papers in Palaeontology 2, 235–63.CrossRefGoogle Scholar
Chen, YL and Lukeneder, A (2017) Late Triassic (Julian) conodont biostratigraphy of a transition from reefal limestones to deep-water environments on the Cimmerian terranes (Taurus Mountains, southern Turkey). Papers in Palaeontology 3, 441–60.CrossRefGoogle Scholar
Dong, ZZ and Wang, W (2006) The Cambrian-Triassic Conodont Faunas in Yunnan, China—Correlative Biostratigraphy and the Study of Palaeobiogeographic Province of Conodont. Kunming: Yunnan Science and Technology Press (in Chinese with English summary).Google Scholar
Enos, P, Lehrmann, DJ, Wei, JY, Yu, YY, Xiao, JF, Chaikin, DH, Minzoni, M, Berry, AK and Montgomery, P (2006) Triassic Evolution of the Yangtze Platform in Guizhou Province, People’s Republic of China. Geological Society of America, Special Papers vol. 417, 105 pp.Google Scholar
Gallet, Y, Besse, J, Krystyn, L, Théveniaut, H and Marcoux, J (1994) Magnetostratigraphy of the Mayerling section (Austria) and Erenkolu Mezarlik (Turkey) section: improvement of the Carnian (Late Triassic) magnetic polarity time scale. Earth and Planetary Science Letters 125, 173–91.CrossRefGoogle Scholar
Gallet, Y, Krystyn, L and Besse, J (1998) Upper Anisian to Lower Carnian magnetostratigraphy from the northern calcareous Alps (Austria). Journal of Geophysical Research: Solid Earth 103, 605–21.CrossRefGoogle Scholar
Gradstein, F, Ogg, J, Schmitz, M and Ogg, G (2020) The Geologic Time Scale 2020. New York: Elsevier.Google Scholar
Harper, EM, Forsythe, GT and Palmer, T (1998) Taphonomy and the Mesozoic Marine revolution: preservation state masks the importance of boring predators. Palaios 13, 352–60.CrossRefGoogle Scholar
Hayashi, S (1968). The Permian conodonts in chert of the Adoyama Formation, Ashio Mountains, central Japan. Earth Science 22, 6377.Google Scholar
Hornung, T, Brandner, R, Krystyn, L, Joachimski, MM and Keim, L (2007) Multistratigraphic constraints on the NW Tethyan “Carnian crisis”. In The Global Triassic (eds Lucas, SG and Spielmann, JA), pp. 5967. New Mexico Museum of Natural History and Science Bulletin 41.Google Scholar
Hsu, DY and Chen, K (1944) Triassic of southwestern Guizhou. Geological Review 9, 1333.Google Scholar
Igo, H (1989) Mixed conodont elements from Hachiman Town, Mino terrane, central Japan. Nihon Koseibutsu Gakkai hokoku, kiji 1989 (156), 270–85.Google Scholar
Jiang, HS, Chen, Y and Liu, F (2018) Research prospects on marine Ladinian-Carnian boundary in Guizhou province. Earth Science 43, 3947–54.Google Scholar
Jiang, HS, Yuan, JL, Chen, Y, Ogg, JG and Yan, JX (2019) Synchronous onset of the mid-Carnian Pluvial Episode in the East and West Tethys: conodont evidence from Hanwang, Sichuan, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 520, 173–80.CrossRefGoogle Scholar
Jin, X, Shi, ZQ, Rigo, M, Franceschi, M and Preto, N (2018) Carbonate platform crisis in the Carnian (Late Triassic) of Hanwang (Sichuan Basin, South China): insights from conodonts and stable isotope data. Journal of Asian Earth Sciences 164, 104–24.CrossRefGoogle Scholar
Karádi, V (2021) Evolutionary trends of the genus Ancyrogondolella (Conodonta) and related taxa in the Norian (Late Triassic). Journal of Earth Science 32, 700–8.CrossRefGoogle Scholar
Karádi, V, Budai, T, Haas, J, Voros, A, Piros, O, Dunkl, I and Toth, E (2022) Change from shallow to deep-water environment on an isolated carbonate platform in the Middle Triassic of the Transdanubian Range (Hungary). Palaeogeography, Palaeoclimatology, Palaeoecology 587, 110793. doi: 10.1016/j.palaeo.2021.110793.CrossRefGoogle Scholar
Kelley, NP and Pyenson, ND (2015) Evolutionary innovation and ecology in marine tetrapods from the Triassic to the Anthropocene. Science 348, aaa3716. doi: 10.1126/science.aaa371.CrossRefGoogle ScholarPubMed
Kiliç, AM, Plasencia, P, Guex, J and Hirsch, F (2017) Chapter seven – challenging Darwin: evolution of Triassic conodonts and their struggle for life in a changing world. In Stratigraphy & Timescales, Volume 2 (ed. Montenari, M), pp. 333–89. Cambridge MA: Academic Press.Google Scholar
Kiliç, AM, Plasencia, P, Ishida, K and Hirsch, F (2015) The case of the Carnian (Triassic) conodont genus Metapolygnathus Hayashi. Journal of Earth Science 26, 219–23.CrossRefGoogle Scholar
Koike, T (1979) Biostratigraphy of Triassic conodonts. In Biostratigraphy of Permian and Triassic Conodonts and Holothurian Sclerites in Japan (eds Koike, T and Igo, H), pp. 2177. Tokyo: Commemorative Volume of the Retirement of Professor Mosaburo Kanuma (in Japanese).Google Scholar
Koike, T (1982) Review of some platform conodonts of the Middle and Late Triassic in Japan. Science Reports of the Yokohama National University, Section II 29, 1527.Google Scholar
Koike, T, Kodachi, Y, Matsuno, T and Baba, H (1991) Triassic conodonts from exotic blocks of limestone in northern Kuzuu, the Ashio Mountains. Science Reports of the Yokohama National University Section II 38, 5369.Google Scholar
Kovács, S (1977) New conodonts from the North Hungarian Triassic. Acta Mineralogica Petrographica 23, 7790.Google Scholar
Kovács, S (1983) On the evolution of excelsa-stock in the Upper Ladinian-Carnian (Conodonta, genus Gondolella, Triassic). Schriftenreihe der Erdwissenschaftlichen Kommissionen 5, 107–20.Google Scholar
Kozur, HW (1976) Paleoecology of Triassic conodonts and its bearing on multielement taxonomy. In Conodont Paleoecology (ed. Barnes, CR), pp. 313–23. The Geological Association of Canada, Special Paper no. 15.Google Scholar
Kozur, HW (1980a) Stratigraphische Reichweite der Wichtigsten Conodonten (ohne Zahnreihenconodonten) der Mittel-und Obertrias. Geologisch-Paläontologische Mitteilungen Innsbruck 10,4778.Google Scholar
Kozur, HW (1980b) Revision der conodontenzoierung der Mittel- und Obertrias des tethyalen Faunenreichs. Geologisch-Paläontologische Mitteilungen Innsbruck 10, 79172.Google Scholar
Kozur, HW (1989a) Significance of events in conodont evolution for the Permian and Triassic stratigraphy. Courier Forschungsinstitut Senckenberg 117, 385408.Google Scholar
Kozur, HW (1989b) The taxonomy of the gondolellid conodonts in the Permian and Triassic. Courier Forschungsinstitut Senckenberg 117, 409–69.Google Scholar
Kozur, HW (2003) Integrated ammonoid, conodont and radiolarian zonation of the Triassic and some remarks to stage/substage subdivision and the numeric age of the Triassic stages. Albertiana 28, 5774.Google Scholar
Kozur, HW, Moix, P and Ozsvart, P (2009) New Spumellaria (Radiolaria) from the early Tuvalian Spongotortilispinus moixi Zone of southeastern Turkey, with some remarks on the age of this fauna. Jahrbuch der Geologischen Bundesanstalt 149, 2559.Google Scholar
Kozur, HW and Mostler, H (1971) Probleme der Conodontenforschung in der Trias. Geologisch-Paläontologische Mitteilungen Innsbruck 1, 119.Google Scholar
Krystyn, L (1980) Triassic conodont localities of the Salzkammergut region. Abhandlungen der Geologischen Bundesanstalt 35, 6198.Google Scholar
Krystyn, L (1983) Das Epidaurus-Profil (Griechenland) – ein Beitrag zur Conodonten-Standardzonierung des tethyalen Ladin und Unterkarn. In Neue Beiträge zur Biostratigraphie der Tethys-Trias. Schriftenreihe der Erdwissenschaftlichen Kommissionen Österreichische Akademie der Wissenschaften 5 (ed. Zapfe, H), pp. 231–58. Vienna: Springer-Verlag.Google Scholar
Krystyn, L, Balini, M and Nicora, A (2004) Lower and Middle Triassic stage and substage boundaries in Spiti. Albertiana 30, 4053.Google Scholar
Lai, XL and Mei, SL (2000) On zonation and evolution of Permian and Triassic conodonts. Developments in Palaeontology and Stratigraphy 18, 371–92.CrossRefGoogle Scholar
Lai, XL, Wignall, PB and Zhang, KX (2001) Palaeoecology of the conodonts Hindeodus and Clarkina during the Permian-Triassic transitional period. Palaeogeography, Palaeoclimatology, Palaeoecology 171, 6372.CrossRefGoogle Scholar
Lehrmann, DJ, Stepchinski, L, Altiner, D, Orchard, MJ, Montgomery, P, Enos, P, Ellwood, BB, Bowring, SA, Ramezani, J and Wang, H (2015) An integrated biostratigraphy (conodonts and foraminifers) and chronostratigraphy (paleomagnetic reversals, magnetic susceptibility, elemental chemistry, carbon isotopes and geochronology) for the Permian–Upper Triassic strata of Guandao section, Nanpanjiang Basin, South China. Journal of Asian Earth Sciences 108, 117–35.CrossRefGoogle Scholar
Lein, R, Krystyn, L, Sylvain, R and Henry, L (2012) Middle Triassic platform/basin transition along the Alpine passive continental margin facing the Tethys Ocean – the Gamsstein: the rise and fall of a Wetterstein Limestone Platform (Styria, Austria). Journal of Alpine Geology 54, 471–98.Google Scholar
Li, Y, Sun, YL, Jiang, DY and Hao, WC (2013) Carnian (Late Triassic) ammonoid biostratigraphy in Luoping County, Eastern Yunnan Province, China. Acta Scientiarum Naturalium Universitatis Pekinensis 49, 471–9.Google Scholar
Loriga, CB, Cirilli, S, Zanche, VD, Bari, DD, Gianolla, P, Laghi, GF, Lowrie, W, Manfrin, S, Mastandrea, A, Mietto, P, Muttoni, G, Neri, C, Posenato, R, Rechichi, M, Rettori, R and Roghi, G (1998) A GSSP candidate for the Ladinian/Carnian boundary, the Prati di Stuores, Stuore, Wiesen section (Dolomites, Italy). Albertiana 21, 218.Google Scholar
Klets, TV (2008) Paleogeographic regionalisation of Triassic seas based on conodontophorids. Stratigraphy and Geological Correlation 16, 467–89.CrossRefGoogle Scholar
Marshall, M (2019) A million years of Triassic rain. Nature 576, 26–8.CrossRefGoogle Scholar
Martínez-Pérez, C, Cascales-Miñana, B, Plasencia, P and Botella, H (2015) Exploring the major depletions of conodont diversity during the Triassic. Historical Biology 27, 503–7.CrossRefGoogle Scholar
Mastandrea, A (1995) Carnian conodonts from Upper Triassic strata of Tamarin section (San Cassiano Fm., Dolomites, Italy). Rivista Italiana di Paleontologia e Stratigrafia 100, 493510.Google Scholar
Mastandrea, A, Neri, C and Russo, F (1997) Conodont biostratigraphy of the S Cassiano formation surrounding the Sella Massif (Dolomites, Italy): implications for sequence stratigraphic models of the Triassic of the Southern Alps. Rivista Italiana di Paleontologia e Stratigrafia 103, 3952.Google Scholar
Mazza, M, Cau, A and Rigo, M (2012) Application of numerical cladistic analyses to the Carnian–Norian conodonts: a new approach for phylogenetic interpretations. Journal of Systematic Palaeontology 10, 401–22.CrossRefGoogle Scholar
Mazza, M, Furin, S, Spötl, C and Rigo, M (2010) Generic turnovers of Carnian/Norian conodonts: climatic control or competition? Palaeogeography, Palaeoclimatology, Palaeoecology 290, 120–37.CrossRefGoogle Scholar
Mietto, P, Andreetta, R, Broglio, LC, Buratti, N, Cirilli, S, De Zanche, V, Furin, S, Gianolla, P, Manfrin, S, Muttoni, G, Neri, C, Nicora, A, Posenato, R, Preto, N, Rigo, M, Roghi, G and Spötl, C (2007) A candidate of the Global Boundary Stratotype Section and Point for the base of the Carnian Stage (Upper Triassic): GSSP at the base of the canadensis Subzone (FAD of Daxatina) in the Prati di Stuores/Stuores Wiesen section (Southern Alps, NE Italy). Albertiana 36, 7897.Google Scholar
Mietto, P and Manfrin, S (1995) A high resolution Middle Triassic ammonoid standard scale in the Tethys Realm; a preliminary report. Bulletin de la Société géologique de France 166, 539–63.CrossRefGoogle Scholar
Mietto, P, Manfrin, S, Preto, N, Rigo, M, Roghi, G, Furin, S, Gianolla, P, Posenato, R, Muttoni, G and Nicora, A (2012) The global boundary stratotype section and point (GSSP) of the Carnian stage (Late Triassic) at Prati di Stuores/Stuores Wiesen section (Southern Alps, NE Italy). Episodes 35, 414–30.CrossRefGoogle Scholar
Mosher, LC (1968) Triassic conodonts from western North America and Europe and their correlation. Journal of Paleontology 42, 895946.Google Scholar
Mundil, R, Palfy, J, Renne, PR and Brack, P (2010) The Triassic timescale: new constraints and a review of geochronological data. In The Triassic Timescale (ed. Lucas, SG), pp. 4160. Geological Society of London, Special Publication no. 334.Google Scholar
Mutti, M and Weissert, H (1995) Triassic monsoonal climate and its signature in Ladinian-Carnian carbonate platforms (Southern Alps, Italy). Journal of Sedimentary Research 65, 357–67.Google Scholar
Muttoni, G, Mazza, M, Mosher, D, Katz, ME, Kent, DV and Balini, M (2014) A Middle–Late Triassic (Ladinian–Rhaetian) carbon and oxygen isotope record from the Tethyan Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 399, 246–59.CrossRefGoogle Scholar
Nakada, R, Ogawa, K, Suzuki, N, Takahashi, S and Takahashi, Y (2014) Late Triassic compositional changes of aeolian dusts in the pelagic Panthalassa: response to the continental climatic change. Palaeogeography, Palaeoclimatology, Palaeoecology 393, 6175.CrossRefGoogle Scholar
Orchard, MJ (2007) New conodonts and zonation, Ladinian-Carnian boundary beds, British Columbia, Canada. In The Global Triassic (eds Lucas, SG and Spielmann, JA), pp. 321–30. New Mexico Museum of Natural History and Science Bulletin 41.Google Scholar
Orchard, MJ (2010) Triassic conodonts and their role in stage boundary definition. The Triassic Timescale (ed. Lucas, SG), pp. 139–61. Geological Society of London, Special Publication no. 334.Google Scholar
Orchard, MJ (2013) Five new genera of conodonts from the Carnian-Norian boundary beds of Black Bear Ridge, northeast British Columbia, Canada. In The Triassic System: New Developments in Stratigraphy and Paleontology (eds Tanner, LH, Spielmann, JA and Lucas, SG), pp. 445–37. New Mexico Museum of Natural History and Science Bulletin 61.Google Scholar
Orchard, MJ and Balini, M (2007) Conodonts from the Ladinian-Carnian boundary beds of South Canyon, New Pass Range, Nevada, USA. In The Global Triassic (eds Lucas, SG and Spielmann, JA), pp. 333–40. New Mexico Museum of Natural History and Science Bulletin 41.Google Scholar
Orchard, MJ, Cordey, F, Rui, L, Bamber, E, Mamet, B, Struik, LC, Sano, H and Taylor, H (2001) Biostratigraphic and biogeographic constraints on the Carboniferous to Jurassic Cache Creek Terrane in central British Columbia. Canadian Journal of Earth Sciences 38, 551–78.CrossRefGoogle Scholar
Orchard, MJ and Tozer, ET (1997) Triassic conodont biochronology, its calibration with the ammonoid standard, and a biostratigraphic summary for the Western Canada Sedimentary Basin. Bulletin of Canadian Petroleum Geology 45, 675–92.Google Scholar
Plasencia, P, Kiliç, AM, Baud, A, Sudar, M and Hirsch, F (2018) The evolutionary trend of platform denticulation in Middle Triassic acuminate Gondolellidae (Conodonta). Turkish Journal of Zoology 42, 187–97.CrossRefGoogle Scholar
Richoz, S, Krystyn, L and Spötl, C (2007) First detailed carbon isotope curve through the Ladinian-Carnian boundary: the Weissenbach section (Austria). Albertiana 36, 98101.Google Scholar
Rigo, M, Mazza, M, Karádi, V and Nicora, A (2018) New Upper Triassic conodont biozonation of the Tethyan Realm. In The Late Triassic World (ed. Tanner, LH), pp. 189235. Topics in Geobiology vol. 46. Cham: Springer.CrossRefGoogle Scholar
Rigo, M, Preto, N, Roghi, G, Tateo, F and Mietto, P (2007) A rise in the carbonate compensation depth of western Tethys in the Carnian (Late Triassic): deep-water evidence for the Carnian Pluvial Event. Palaeogeography, Palaeoclimatology, Palaeoecology 246, 188205.CrossRefGoogle Scholar
Shen, SZ and Zhang, H (2017) What caused the five mass extinctions? Chinese Science Bulletin 62, 1119–35.Google Scholar
Stefani, M, Furin, S and Gianolla, P (2010) The changing climate framework and depositional dynamics of Triassic carbonate platforms from the Dolomites. Palaeogeography, Palaeoclimatology, Palaeoecology 290, 4357.CrossRefGoogle Scholar
Stockar, R, Adatte, T, Baumgartner, PO and Föllmi, KB (2013) Palaeoenvironmental significance of organic facies and stable isotope signatures: the Ladinian San Giorgio Dolomite and Meride Limestone of Monte San Giorgio (Switzerland, WHL UNESCO). Sedimentology 60, 239–69.CrossRefGoogle Scholar
Sun, ZY (2006) The Middle and Upper Triassic biostratigraphy in western Guizhou and eastern Yunnan . Ph.D. thesis, Peking University, Beijing, China. Published thesis.Google Scholar
Sun, ZY, Hao, WC and Jiang, DY (2005) Conodont biostratigraphy near the Ladinain-Carnian boundary interval in Guanling of Guizhou. Journal of Stratigraphy 29, 257–63.Google Scholar
Sun, ZY, Jiang, DY, Ji, C and Hao, WC (2016) Integrated biochronology for Triassic marine vertebrate faunas of Guizhou Province, South China. Journal of Asian Earth Sciences 118, 101–10.CrossRefGoogle Scholar
Sun, YD, Joachimski, MM, Wignall, PB, Yan, CB, Chen, YL, Jiang, HS, Wang, LN and Lai, XL (2012) Lethally hot temperatures during the Early Triassic Greenhouse. Science 338, 366–70.CrossRefGoogle ScholarPubMed
Sun, YD, Orchard, MJ, Kocsis, ÁT and Joachimski, MM (2020) Carnian–Norian (Late Triassic) climate change: evidence from conodont oxygen isotope thermometry with implications for reef development and Wrangellian tectonics. Earth and Planetary Science Letters 534, 116082. doi: 10.1016/j.epsl.2020.116082.CrossRefGoogle Scholar
Sun, YD, Richoz, S, Krystyn, L, Grasby, SE, Chen, YL, Banerjee, D and Joachimski, MM (2021) Integrated bio-chemostratigraphy of Lower and Middle Triassic marine successions at Spiti in the Indian Himalaya: implications for the Early Triassic nutrient crisis. Global and Planetary Change 196, 103363. doi: 10.1016/j.gloplacha.2020.103363.CrossRefGoogle Scholar
Sun, YD, Richoz, S, Krystyn, L, Zhang, ZT and Joachimski, MM (2019) Perturbations in carbon cycle during the Carnian Humid Episode: carbonate carbon isotope records from southwestern China and northern Oman. Journal of the Geological Society, London 176, 167–77.CrossRefGoogle Scholar
Sun, YD, Wignall, PB, Joachimski, MM, Bond, DPG, Grasby, SE, Lai, XL, Wang, LN, Zhang, ZT and Sun, S (2016) Climate warming, euxinia and carbon isotope perturbations during the Carnian (Triassic) Crisis in South China. Earth and Planetary Science Letters 444, 88100.CrossRefGoogle Scholar
Sweet, WC, Mosher, LC, Clark, D, Collinson, JW and Hasenmueller, WA (1971) Conodont biostratigraphy of the Triassic. In Symposium on Conodont Biostratigraphy (eds Stweet, WC and Bergstrom, SM), pp. 441–66. Geological Society of America Memoirs no. 127.Google Scholar
Tackett, LS (2016) Late Triassic durophagy and the origin of the Mesozoic marine revolution Palaios 31, 122–4.CrossRefGoogle Scholar
Tanner, LH (2018) The Late Triassic World: Earth in a Time of Transition. Cham: Springer.CrossRefGoogle Scholar
Tian, CR, Dai, JY and Tian, SG (1983) Triassic conodonts. In Paleontological Atlas of Southwest China, Volume of Microfossils (ed. Chendu Institute of Geology and Mineral Resources), pp. 345–98. Beijing: Geological Publishing House.Google Scholar
Tomimatsu, Y, Nozaki, T, Sato, H, Takaya, Y, Kimura, J-I, Chang, Q, Naraoka, H, Rigo, M and Onoue, T (2021) Marine osmium isotope record during the Carnian “pluvial episode” (Late Triassic) in the pelagic Panthalassa Ocean. Global and Planetary Change 197, 103387. doi: 10.1016/j.gloplacha.2020.103387.CrossRefGoogle Scholar
Tong, JN, Chu, DL, Liang, L, Shu, WC, Song, HJ, Song, T, Song, HY and Wu, YY (2019) Triassic integrative stratigraphy and timescale of China. Science China Earth Sciences 62, 189222.CrossRefGoogle Scholar
Trotter, JA, Williams, IS, Nicora, A, Mazza, M and Rigo, M (2015) Long-term cycles of Triassic climate change: a new δ18O record from conodont apatite. Earth and Planetary Science Letters 415, 165–74.CrossRefGoogle Scholar
Vermeij, GJ (1977) The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3, 245–58.CrossRefGoogle Scholar
Wang, YG (1983) Ammonoids from Falang Formation (Ladinain-E. Carnian) of southwestern Guizhou, China. Acta Palaeontologica Sinica 22, 153–62.Google Scholar
Wang, XF, Bachmann, GH, Hagdorn, H, Sander, PM, Cuny, G, Chen, XH, Wang, CS, Chen, LD, Cheng, L and Meng, FS (2008) The Late Triassic black shales of the Guanling Area, Guizhou Province, South-West China: a unique marine reptile and pelagic crinoid fossil lagerstätte. Palaeontology 51, 2761.Google Scholar
Wang, ZH and Dai, JY (1981) Triassic conodonts from the Jiangyou-Beichuan area, Sichuan province. Acta Palaeotologica Sinica 20, 138–52.Google Scholar
Wang, CY, Kang, PQ and Wang, ZH (1998) Conodont-based age of the Kueichousaurus Hui Yang, 1958. Acta Micropalaeotologica Sinica 15, 196–8.Google Scholar
Wang, CY and Wang, ZH (2016) Conodont Biostratigraphy in China. Hangzhou: Zhejiang University Press (in Chinese).Google Scholar
Wang, HM, Wang, XL, Li, RX and Wei, JY (2005) Triassic conodont succession and stage subdivision of the Guandao section, Bianyang, Luodian, Guizhou. Acta Palaeontologica Sinica 44, 611–26.Google Scholar
Xu, GH, Niu, ZJ and Chen, LD (2003) Triassic cephalopods from the Zhuganpo and Xiaowa Formations in Guanling, Guizhou, with a discussion on the age of the Guanling biota. Geological Bulletin of China 22, 254–65.Google Scholar
Yamashita, D, Kato, H, Onoue, T and Suzuki, N (2018) Integrated Upper Triassic conodont and radiolarian biostratigraphies of the Panthalassa Ocean. Paleontological Research 22, 167–97.CrossRefGoogle Scholar
Yang, SR, Hao, WC and Jiang, DY (2002) Conodonts of the Fanglang Formation from Langdai, Liuzhi county, Guizhou Province and their age significance. Geological Review 48, 586–92.Google Scholar
Yang, SR, Hao, WC and Wang, XP (1999) Triassic conodont sequences from different facies in China. In Biotic and Geological Development of the Paleo-Tethys in China (eds Yao, A, Ezaki, Y, Hao, WC and Wang, XP), pp. 97112. Beijing: Peking University Press.Google Scholar
Yang, SR, Liu, J and Zhang, MF (1995) Conodonts from the Falang Formation of southwestern Guizhou and their age. Journal of Stratigraphy 19, 161–70.Google Scholar
Yao, LC (1987) Triassic conodont-bearing Strata in China. Journal of Tongji University 15, 489–99.Google Scholar
Yin, HF and Peng, YQ (2000) The Triassic of China and its interregional correlation. Developments in Palaeontology and Stratigraphy 18, 197220.CrossRefGoogle Scholar
Zhang, L, Orchard, MJ, Algeo, TJ, Chen, Z-Q, Lyu, Z, Zhao, L, Kaiho, K, Ma, B and Liu, S (2019) An intercalibrated Triassic conodont succession and carbonate carbon isotope profile, Kamura, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 519, 6583.CrossRefGoogle Scholar
Zhang, ZT, Sun, YD and Lai, XL (2018a) Progresses on Carnian (Late Triassic) conodont study in southwestern China. Earth Science 43, 3955–75.Google Scholar
Zhang, ZT, Sun, YD, Lai, XL, Joachimski, MM and Wignall, PB (2017) Early Carnian conodont fauna at Yongyue, Zhenfeng area and its implication for Ladinian-Carnian subdivision in Guizhou, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 486, 142–57.CrossRefGoogle Scholar
Zhang, ZT, Sun, YD, Lai, XL and Wignall, PB (2018b) Carnian (Late Triassic) conodont faunas from southwestern China and their implications. Papers in Palaeontology 4, 513–35.CrossRefGoogle Scholar
Zou, XD, Balini, M, Jiang, D, Tintori, A, Sun, Z and Sun, Y (2015) Ammonoids from the Zhuganpo member of the Falang Formation at Nimaigu and their relevance for dating the Xingyi fossil- Lagerstatte (Late Ladinian, Guizhou, China). Rivista Italiana di Paleontologia e Stratigrafia 121, 135–61.Google Scholar