Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T01:12:29.691Z Has data issue: false hasContentIssue false

The Liuyuan Volcanic Belt in NW China revisited: evidence for Permian rifting associated with the assembly of continental blocks in the Central Asian Orogenic Belt

Published online by Cambridge University Press:  03 February 2016

YU WANG*
Affiliation:
Institute of Earth Sciences, China University of Geosciences, Beijing 100083, China
ZHAOHUA LUO
Affiliation:
Institute of Earth Sciences, China University of Geosciences, Beijing 100083, China
M. SANTOSH
Affiliation:
Institute of Earth Sciences, China University of Geosciences, Beijing 100083, China Centre for Tectonics, Resources and Exploration, Department of Earth Sciences, University of Adelaide, SA 5005, Australia
SHUZHI WANG
Affiliation:
Institute of Earth Sciences, China University of Geosciences, Beijing 100083, China
NA WANG
Affiliation:
Institute of Earth Sciences, China University of Geosciences, Beijing 100083, China
*
Author for correspondence: wangy@cugb.edu.cn

Abstract

The basaltic pillow lavas in the Liuyuan region of NW China, considered to be part of an ophiolitic suite, have been central to the models on tectonic setting, evolution and timing of the final closure of the Palaeo-Asian Ocean. New field evidence on the sedimentary units associated with the basalts reveals comparable sequences in the northern and southern flanks of the Liuyuan Volcanic Belt with coarse to fine sediments from periphery to the centre. The dacites and rhyolites formed coevally with the pillow basalts. The pillow basalts are interlayered with lacustrine sandstone, claystone and clayey lake deposits. Detrital zircons from these sediments yield zircon U–Pb ages of 291–285 Ma. Andesites, dacites and rhyolites from the basaltic sequence yield U–Pb ages of 280–277 Ma, similar to the 282–280 Ma ages of gabbros that intrude the pillow lavas. All these rocks cover the 460–440 Ma granite and greenschist basement and have been intruded by gabbros of c. 272 Ma age, with subsequent (230–227 Ma) north–south contractional thrusting and folding. The data from our study are incompatible with the existing models that consider the basalts as part of an ophiolitic suite. Along the northern continental margin of China from west to east, the Tarim, Dunhuang-Alxa and North China cratonic areas all show evidence for regional extension through rifting during early–middle Permian time. These rift features and basaltic eruptions occurred coevally with the assembly of various microcontinental blocks against the Siberian craton at c. 300–250 Ma, synchronous with amalgamation of the Central Asian Orogenic Belt (CAOB) on the northern side of the Liuyuan Rift. These events were also broadly synchronous with formation of the global supercontinent Pangea.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ao, S. J., Xiao, W. J., Han, C. M., Mao, Q. G. & Zhang, J. E. 2010. Geochronology and geochemistry of Early Permian mafic–ultramafic complexes in the Beishan area, Xinjiang, NW China: implications for late Paleozoic tectonic evolution of the southern Altaids. Gondwana Research 18, 466–78.CrossRefGoogle Scholar
Buiter, S. J. H. & Torsvik, T. H. 2014. A review of Wilson Cycle plate margins: a role for mantle plumes in continental break-up along sutures? Gondwana Research 26, 627–53.CrossRefGoogle Scholar
Cleven, N. R., Lin, S. F. & Xiao, W. J. 2015. The Hongliuhe fold-and-thrust belt: evidence of terminal collision and suture-reactivation after the Early Permian in the Beishan orogenic collage, Northwest China. Gondwana Research 27, 796810.CrossRefGoogle Scholar
Cocks, L. R. M. & Torsvik, T. H. 2007. Siberia, the wandering northern terrane, and its hanging geography through the Palaeozoic. Earth-Science Reviews 82, 2974.CrossRefGoogle Scholar
Geng, Y. S. & Zhou, X. W. 2011. Characteristics of geochemistry and zircon Hf isotope of the Early Neoproterozoic granite in Alax area, Inner Mongolia. Acta Petrologica Sinica 27, 897908 (in Chinese with English abstract).Google Scholar
Han, B. F., He, G. Q., Wang, X. C. & Guo, Z. J. 2011. Late Carboniferous collision between the Tarim and Kazakhstan–Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China. Earth-Science Reviews 109, 7493.CrossRefGoogle Scholar
Han, B. F., He, G. Q., Wang, S. G. & Hong, D. W. 1998. Post-collisional mantle-derived magmatism and vertical growth of the continental crust in North Xinjiang. Geological Review 44, 396406 (in Chinese with English abstract).Google Scholar
Jiang, C. Y., Cheng, S. L., Ye, S. F., Xia, M. Z., Jiang, H. B. & Dai, Y. C. 2006. Lithogeochemistry and petrogenesis of Zhongposhanbei mafic rock body, at Beishan region, Xinjiang. Acta Petrologica Sinica 22, 115–26 (in Chinese with English abstract).Google Scholar
Jiang, C. Y., Xia, M. Z., Yu, X., Lu, D. X., Wei, W. & Ye, S. F. 2007. Liuyuan trachybasalt belt in the northeastern Tarim plate: products of asthenosphere mantle decompressional melting. Acta Petrologica Sinica 23, 1765–78 (in Chinese with English abstract).Google Scholar
Kawachi, Y. & Pringle, I. J. 1988. Multiple rind structure in pillow lava as an indicator of shallow water. Bulletin of Volcanology 50, 161–8.CrossRefGoogle Scholar
Kennish, M. J. & Lutz, R. A. 1998. Morphology and distribution of lava flows on mid-ocean ridges: a review. Earth-Science Reviews 43, 6390.CrossRefGoogle Scholar
Kröner, A., Kovach, V., Belousova, E., Hegner, E., Armstrong, R., Dolgopolova, A., Seltmann, R., Alexeiev, D. V., Hoffmann, J. E., Wong, J., Sun, M., Cai, K., Wang, T., Tong, Y., Wilde, S. A., Degtyarev, K. E. & Rytsk, E. 2014. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Research 25, 103–25.CrossRefGoogle Scholar
Laurent-Charvet, S., Charvet, J., Shu, L. S. Ma, S., R. & Lu, H. F. 2002. Palaeozoic late collisional strike-slip deformations in Tianshan and Altay, eastern Xinjiang, NW China. Terra Nova 14, 249–56.CrossRefGoogle Scholar
Li, J. B., Kang, X., Wang, T., Li, W. P. & Tong, Y. 2006. Establishment of the Early Permian Hongliuhe Group in the Beishan area on the border region of Xinjiang and Gansu, China. Geological Bulletin of China 25, 465–8 (in Chinese with English abstract).Google Scholar
Li, J. Y., He, G. Q., Xu, X., Li, H. Q., Sun, G. H., Yang, T. N., Gao, L. M. & Zhu, Z. X. 2006. Crustal tectonic framework of northern Xinjiang and adjacent regions and its formation. Acta Geologica Sinica 80, 148–67 (in Chinese with English abstract).Google Scholar
Li, J. Y. & Xu, X. 2004. Major problems on geologic structures and metallogenesis of northern Xinjiang, NW China. Xinjiang Geology 22, 119–24 (in Chinese with English abstract).Google Scholar
Liao, J. & Gerya, T. 2015. From continental rifting to seafloor spreading: insight from 3D thermo-mechanical modeling. Gondwana Research 28, 1329–43.CrossRefGoogle Scholar
Liu, C., Zhao, Z. H. & Guo, Z. J. 2006. Chronology and geochemistry of lamprophyre dykes from Beishan area, Gansu Province and implications for the crust–mantle interaction. Acta Petrologica Sinica 22, 1294–306 (in Chinese with English abstract).Google Scholar
Liu, Y. S., Gao, S., Yuan, H. L., Zhao, L., Liu, X. M., Wang, X. C., Hu, Z. C. & Wang, L. S. 2004. U–Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton: insights on evolution of lower continental crust. Chemical Geology 211, 87109.CrossRefGoogle Scholar
Ludwig, K. R. 2005. Isoplot: A Plotting and Regression Program for Radiogenic Isotope Data, Version 3.23. Berkerly, CA, USA: Berkeley Geochronology Center.Google Scholar
Mao, Q. G., Xiao, W. J., Windley, B. F., Han, C. M., Qu, J. F., Ao, S. J., Zhang, J. E. & Guo, Q. Q. 2012. The Liuyuan complex in the Beishan, NW China: a Carboniferous–Permian ophiolitic fore-arc sliver in the southern Altaids. Geological Magazine 149, 483506.CrossRefGoogle Scholar
Nance, R. D., Murphy, J. B. & Santosh, M. 2014. The supercontinent cycle: a retrospective essay. Gondwana Research 25, 429.CrossRefGoogle Scholar
Pan, J. H., Guo, Z. J. & Zhao, Z. H. 2008. Geochronology, geochemistry and tectonic implications of Permian basalts in Hongliuhe area on the border between Xinjiang and Gansu. Acta Petrologica Sinica 24, 793802 (in Chinese with English abstract).Google Scholar
Pirajno, F. 2015. Intracontinental anorogenic alkaline magmatism and carbonatites, associated mineral systems and the mantle plume connection. Gondwana Research 27, 1181–216.CrossRefGoogle Scholar
Pirajno, F. & Santosh, M. 2015. Mantle plumes, supercontinents, intracontinental rifting and mineral systems. Precambrian Research 259, 243–61.CrossRefGoogle Scholar
Qin, K. Z., Su, B. X., Li, X. H., Tang, D. M., Sakyi, P. A., Sun, H., Xiao, Q. H. & Liu, P. P. 2011. SIMS zircon U–Pb geochronology and Sr–Nd isotopes of mafic–ultramafic intrusions in Eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): constraints on a ca. 280 Mantle plume. American Journal of Sciences 311, 237–60.CrossRefGoogle Scholar
Sachau, T. & Koehn, D. 2010. Faulting of the lithosphere during extension and related rift-flank uplift: a numerical study. International Journal of Earth Sciences (Geol Rundsch) 99, 1619–32.CrossRefGoogle Scholar
Safonova, I. Yu, Maruyama, S. & Litasov, K. 2015. Generation of hydrous-carbonated plumes in the mantle transition zone linked to tectonic erosion and subduction. Tectonophysics 662, 454–71.CrossRefGoogle Scholar
Safonova, I. Yu. & Santosh, M. 2014. Accretionary complexes in the Asia–Pacific region: Tracing archives of ocean plate stratigraphy and tracking mantle plumes. Gondwana Research 25, 126–58.CrossRefGoogle Scholar
Safonova, I. Yu., Utsunomiya, A., Kojima, S., Nakae, S., Tomurtogoo, O., Filippov, A. N. & Koizumi, K. 2009. Pacific superplume-related oceanic basalts hosted by accretionary complexes of Central Asia, Russian Far East and Japan. Gondwana Research 16, 587608.CrossRefGoogle Scholar
Schellart, W. P. 2008. Kinematics and flow patterns in deep mantle and upper mantle subduction models: Influence of the mantle depth and slab to mantle viscosity ratio. Geochemistry Geophysics Geosystems 9, Q03014, doi: 10.1029/2007GC001656.CrossRefGoogle Scholar
Schellart, W. P. 2010. Mount Etna-Iblean volcanism caused by rollback-induced upper mantle upwelling around the Ionian slab edge: an alternative to the plume model. Geology 38, 691–4.CrossRefGoogle Scholar
Schellart, W. P. & Moresi, L. 2013. A new driving mechanism for backarc extension and backarc shortening through slab sinking induced toroidal and poloidal mantle flow: Results from dynamic subduction models with an overriding plate. Journal of Geophysical Research: Solid-Earth 118, 3221–48.CrossRefGoogle Scholar
Shaker Ardakani, A. R., Arvin, M., Oberhänsli, R., Mocek, B. & Moeinzadeh, S. H. 2009. Morphology and petrogenesis of pillow lavas from the Ganj Ophiolitic Complex, southeastern Kerman, Iran. Journal of Sciences, Islamic Republic of Iran 20, 139–51.Google Scholar
Simonov, V. A., Mikolaichuk, A. V., Safonova, I. Yu, Kotlyarov, A. V. & Kovyazin, S. V. 2015. Late Paleozoic–Cenozoic intra-plate continental basaltic magmatism of the Tienshan–Junggar region in the SW Central Asian Orogenic Belt. Gondwana Research 27, 1646–66.CrossRefGoogle Scholar
Su, B. X., Qin, K. Z., Sakyi, P. A., Li, X. H., Yang, Y. H., Sun, H., Tang, D. M., Liu, P. P., Xiao, Q. H. & Malaviarachchi, S. P. K. 2011 a. U–Pb ages and Hf–O isotopes of zircons from Late Paleozoic mafic–ultramafic units in the southern Central Asian Orogenic Belt: Tectonic implications and evidence for an Early-Permian mantle plume. Gondwana Research 20, 516–31.CrossRefGoogle Scholar
Su, B. X., Qin, K. Z., Sakyi, P. A., Liu, P. P., Tang, D. M., Malaviarachchi, S. P. K., Xiao, Q. H., Sun, H., Dai, Y. C. & Hu, Y. 2011 b. Geochemistry and geochronology of acidic rocks in the Beishan region, NW China: petrogenesis and tectonic implications. Journal of Asian Earth Sciences 41, 3143.CrossRefGoogle Scholar
Tian, Z. H., Xiao, W. J., Shan, Y. H., Windley, B. F., Han, C. M., Zhang, J. E. & Song, D. F. 2013. Mega-fold interference patterns in the Beishan orogen (NW China) created by change in plate configuration during Permo–Triassic termination of the Altaids. Journal of Structural Geology 52, 119–35.CrossRefGoogle Scholar
Tian, Z. H., Xiao, W. J., Windley, B. F., Lin, L. N., Han, C. M., Zhang, J. E., Wan, B., Ao, S. J., Song, D. F. & Feng, J. Y. 2014. Structure, age, and tectonic development of the Huoshishan–Niujuanzi ophiolitic mélange, Beishan, southernmost Altaids. Gondwana Research 25, 820–41.CrossRefGoogle Scholar
Wang, Y., Li, J. Y. & Sun, G. H. 2008. Post-collision eastward extrusion and tectonic exhumation along the eastern Tianshan orogen, central Asia: constraints from dextral strike-slip motion and 40Ar/39Ar geochronological evidence. Journal of Geology 116, 599618.CrossRefGoogle Scholar
Wang, Y., Santosh, M., Luo, Z. H. & Hao, J. H. 2015. Large igneous provinces linked to supercontinent assembly. Journal of Geodynamics 85, 110.CrossRefGoogle Scholar
Wang, Y., Sun, G. H. & Li, J. Y. 2010. U–Pb (SHRIMP) and 40Ar/39Ar geochronological constraints on the evolution of the Xingxingxia shear zone, NW China: a Triassic segment of the Altyn Tagh fault system. Geological Society of America Bulletin 122, 487505.CrossRefGoogle Scholar
Wang, Y., Zhang, X. M., Zhang, J. F., Wang, E. C., Li, Q. & Sun, G. H. 2005. 40Ar–39Ar thermochronological evidence for formation and Mesozoic evolution of the northern–central segment of the Altyn Tagh Fault System in northern Tibetan Plateau. Geological Society of America Bulletin 117, 1336–46.CrossRefGoogle Scholar
Xiao, W. J., Mao, Q. G., Windley, B. F., Han, C. M., Qu, J. F., Zhang, J. E., Ao, S. J., Cleven, N. R., Lin, S. F., Shan, Y. H. & Li, J. L. 2010. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage. American Journal of Science 310, 1553–94.CrossRefGoogle Scholar
Xiao, W. J. & Santosh, M. 2014. The western Central Asian Orogenic Belt: a window to accretionary orogenesis and continental growth. Gondwana Research 25, 1429–44.CrossRefGoogle Scholar
Xiao, W. J., Sun, M. & Santosh, M. 2015. Continental reconstruction and metallogeny of the Circum-Junggar areas and termination of the southern Central Asian Orogenic Belt. Geoscience Frontiers 6, 137–40.CrossRefGoogle Scholar
Xiao, W. J., Windley, B. F., Huang, B. C., Han, C. M., Yuan, C., Chen, H. L., Sun, M., Sun, S. & Li, J. L. 2009. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Science 98, 1189–217.CrossRefGoogle Scholar
Xu, X. Y., Li, R. S., Chen, J. L., Ma, Z. P., Li, Z. P., Wang, H. L., Bai, J. K. & Tang, Z. 2014. New constrains on the Paleozoic tectonic evolution of the northern Xinjiang area. Acta Petrologica Sinica 30, 1521–34 (in Chinese with English abstract).Google Scholar
Yamagishi, H. 1985. Growth of pillow lobes: evidence from pillow lavas of Hokkaido, Japan and North Island New Zealand. Geology 13, 499502.2.0.CO;2>CrossRefGoogle Scholar
Yang, T. N., Li, J. Y., Liang, M. J. & Wang, Y. 2015. Early Permian mantle–crust interaction in the south-central Altaids: high-temperature metamorphism, crustal partial melting, and mantle-derived magmatism. Gondwana Research 28, 371–90.CrossRefGoogle Scholar
Yang, T. N., Wang, Y., Li, J. Y. & Sun, G. H. 2007. Vertical and horizontal strain partitioning of the Central Tianshan (NW China): evidence from structures and 40Ar/39Ar geochronology. Journal of Structural Geology 29, 1605–21.CrossRefGoogle Scholar
Zhang, C. L., Zou, H. B., Li, H. K. & Wang, H. Y. 2013. Tectonic framework and evolution of the Tarim Block in NW China. Gondwana Research 23, 1306–15.CrossRefGoogle Scholar
Zhang, C. L., Zou, H. B., Yao, C. Y. & Dong, Y. G. 2014. Origin of Permian gabbroic intrusions in the southern margin of the Altai Orogenic belt: a possible link to the Permian Tarim mantle plume? Lithos 204, 112–24.CrossRefGoogle Scholar
Zhang, W., Wu, T. R., Zheng, R. G., Feng, J. C., Luo, H. L., He, Y. K. & Xu, C. 2012. Post-collisional southeastern Beishan granites: geochemistry, geochronology, Sr–Nd–Hf isotopes and their implications for tectonic evolution. Journal of Asian Earth Sciences 58, 5163.CrossRefGoogle Scholar
Zhang, Y. Y., Dostal, J., Zhao, Z. H., Liu, C. & Guo, Z. J. 2011. Geochronology, geochemistry and petrogenesis of mafic and ultramafic rocks from Southern Beishan area, NW China: Implications for crust–mantle interaction. Gondwana Research 20, 816–30.CrossRefGoogle Scholar
Zhao, Z. H., Guo, Z. J., Han, B. F., Wang, Y. & Liu, C. 2006. A comparative study on Permian basalt from eastern Xinjiang–Beishan area of Gansu Province, and its tectonic implications. Acta Petrologica Sinica 22, 1279–93 (in Chinese with English abstract).Google Scholar
Zhao, Z. H., Guo, Z. J., Zhang, Z. C., Shi, H. Y. & Tian, J. 2004. The geochemical characteristics and tectonic setting of the low Permian basalts in Hongliuhe area at the border between Xinjiang and Gansu provinces. Geological Journal of China Universities 10, 534–45 (in Chinese with English abstract).Google Scholar
Zhou, M. F., Lesher, C. M., Yang, Z. X., Li, J. W. & Sun, M. 2004. Geochemistry and petrogenesis of 270 Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, northwest China: implications for the tectonic evolution of the Central Asian orogenic belt. Chemical Geology 209, 233–57.CrossRefGoogle Scholar
Ziegler, P. A. 1992. Geodynamics of rifting. Tectonophysics 215(1–2), 221–53.CrossRefGoogle Scholar
Ziegler, P. A. & Cloetingh, S. 2004. Dynamic processes controlling evolution of rifted basins. Earth-Science Reviews 64, 150.CrossRefGoogle Scholar
Zuo, G. C., Liu, Y. K. & Liu, C. Y. 2003. Framework and evolution of the tectonic structure in Beishan area across Gansu Province, Xinjiang Autonomous region and Inner Mongolia Autonomous region. Acta Geologica Gansu 12, 115 (in Chinese with English abstract).Google Scholar
Zuo, G. C., Zhang, S. L., He, G. Q. & Zhang, Y. 1991. Plate tectonic characteristics during the early Paleozoic in Beishan near the Sino-Mongolian border region, China. Tectonophysics 188, 385–92.CrossRefGoogle Scholar
Supplementary material: File

Wang supplementary material

Data repository 2

Download Wang supplementary material(File)
File 124.4 KB
Supplementary material: File

Wang supplementary material

Data repository 1

Download Wang supplementary material(File)
File 2.3 MB