Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T17:05:07.803Z Has data issue: false hasContentIssue false

Lower Wenlock black shales in the northern Holy Cross Mountains, Poland: sedimentary and geochemical controls on the Ireviken Event in a deep marine setting

Published online by Cambridge University Press:  04 February 2016

JUSTYNA SMOLAREK
Affiliation:
Faculty of Earth Sciences, University of Silesia, Będzińska 60, 41–200 Sosnowiec, Poland
WIESŁAW TRELA
Affiliation:
The Polish Geological Institute – National Research Institute, Zgoda 21, 25–953 Kielce, Poland
DAVID P. G. BOND
Affiliation:
Department of Geography, Environment and Earth Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
LESZEK MARYNOWSKI*
Affiliation:
Faculty of Earth Sciences, University of Silesia, Będzińska 60, 41–200 Sosnowiec, Poland Wrocław Research Centre EIT + Ltd, Stabłowicka 147, 54–066 Wrocław, Poland
*
Author for correspondence: leszek.marynowski@us.edu.pl

Abstract

The stratigraphic variability and geochemistry of Llandovery/Wenlock (L/W) Series boundary sediments in Poland reveals that hemipelagic sedimentation under an anoxic/euxinic water column was interrupted by low-density bottom currents or detached diluted turbid layers that resulted in intermittent seafloor oxygenation. Total organic carbon values and inorganic proxies throughout the Wilków 1 borehole section suggest variable redox conditions. U/Mo ratios > 1 throughout much of the Aeronian and Telychian stages, together with an absence of pyrite framboids, suggest oxygenated conditions prevailed. However, elevated total organic carbon near the Aeronian/Telychian boundary, together with increased U/Th and V/(V + Ni) ratios and populations of small pyrite framboids are consistent with the development of dysoxic/anoxic conditions at that time. U/Th, V/Cr and V/(V + Ni) ratios, as well as Uauthig and Mo concentrations, suggest that during the Ireviken black shale deposition, bottom-water conditions deteriorated from oxic during Telychian time to mostly suboxic/anoxic immediately prior to the L/W boundary, before a brief reoxygenation at the end of the Ireviken black shale sedimentation in the Sheinwoodian Stage. Rapid fluctuations in U/Mo during the Ireviken Event are characteristic of fluctuating redox conditions that culminated in an anoxic/euxinic seafloor in Sheinwoodian time. Following Ireviken black shale deposition, conditions once again became oxygen deficient with the development of a euxinic zone in the water column. The Aeronian to Sheinwoodian deep-water redox history was unstable, and rapid fluctuations of the chemocline across the L/W Series boundary probably contributed to the Ireviken Event extinctions, which affected mainly pelagic and hemipelagic fauna.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Algeo, T. J., Kuwahara, K., Sano, H., Bates, S., Lyons, T., Elswick, E., Hinnov, L., Ellwood, B., Moser, J. & Maynard, J. B. 2011. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian–Triassic Panthalassic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 308, 6583.CrossRefGoogle Scholar
Armstrong, H. A. & Harper, D. A. T. 2014. An earth system approach to understanding the end-Ordovician (Hirnantian) mass extinction. In Volcanism, Impacts, and Mass Extinctions: Causes and Effects. pp. 287300. Boulder, Colorado: Geological Society of America, Special Papers 505.Google Scholar
Bickert, T., Pätzold, J., Samtleben, C. & Munnecke, A. 1997. Paleoenvironmental changes in the Silurian indicated by stable isotopes in brachiopod shells from Gotland, Sweden. Geochimica et Cosmochimica Acta 61, 2717–30.CrossRefGoogle Scholar
Bond, D. P. G. & Wignall, P. B. 2008. The role of sea-level change and marine anoxia in the Frasnian–Famennian (Late Devonian) mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 263, 107–18.CrossRefGoogle Scholar
Bond, D. P. G. & Wignall, P. B. 2010, Pyrite framboid study of marine Permian–Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. Geological Society of America Bulletin 122, 1265–79.CrossRefGoogle Scholar
Brett, C. E., Ferretti, A., Histon, K. & Schönlaub, H. P. 2009. Silurian sequence stratigraphy of the Carnic Alps, Austria. Palaeogeography, Palaeoclimatology, Palaeoecology 279, 128.CrossRefGoogle Scholar
Brumsack, H.-J. 2006. The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeography, Palaeoclimatology, Palaeoecology 232, 344–61.CrossRefGoogle Scholar
Brunner, C. A., Beal, J. M., Bentley, S. Y. & Furukawa, K. 2006. Hypoxia hotspots in the Mississippi Bight. Journal of Foraminiferal Research 36, 95107.CrossRefGoogle Scholar
Calner, M. 2008. Silurian global events – at the tipping point of climate change. In Mass Extinctions (ed. Elewa, A. M. T.), pp. 2158. Berlin, Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Cocks, L. R. M. 2002. Key Lower Palaeozoic faunas from near the Trans-European Suture Zone. In Palaeozoic Amalgamation of Central Europe (eds Winchester, J. A., Pharaoh, T. C. & Verniers, J.), pp. 3746. Geological Society of London, Special Publication no. 201.Google Scholar
Cocks, L. R. M. & Torsvik, T. H. 2005. Baltica from the late Precambrian to mid-Paleozoic times: the gain and loss of a terrane's identity. Earth-Science Reviews 72, 3966.CrossRefGoogle Scholar
Cramer, B. D. & Saltzman, M. R. 2005. Sequestration of 12C in the deep ocean during the early Wenlock (Silurian) positive carbon isotope excursion. Palaeogeography, Palaeoclimatology, Palaeoecology 219, 333–49.CrossRefGoogle Scholar
Cramer, B. D. & Saltzman, M. R. 2007. Fluctuations in epeiric sea carbonate production during Silurian positive carbon isotope excursions: a review of proposed paleoceanographic models. Palaeogeography, Palaeoclimatology, Palaeoecology 245, 3745.CrossRefGoogle Scholar
Dadlez, R., Kowalczewski, Z. & Znosko, J. 1994. Niektóre kluczowe problemy przedpermskiej tektoniki Polski. Geological Quarterly 38, 169–90.Google Scholar
Deczkowski, Z. & Tomczyk, H. 1969. Older Palaeozoic in borehole Wilków (Northern Part of the Świętokrzyskie Mountains). Geological Quarterly 13, 1424. (in Polish with English summary)Google Scholar
De Koff, J. P., Anderson, M. A. & Amrhein, C. 2008. Geochemistry of iron in the Salton Sea, California. Hydrobiologia 604, 111–21.CrossRefGoogle Scholar
Díaz-Martínez, E. & Grahn, Y. 2007. Early Silurian glaciation along the western margin of Gondwana (Peru, Bolivia and northern Argentina): palaeogeographic and geodynamic setting. Palaeogeography, Palaeoclimatology, Palaeoecology 245, 6281.CrossRefGoogle Scholar
Emsbo, P., McLaughlin, P., Munnecke, A., Breit, G. N., Koenig, A. E., Jeppsson, L. & Verplanck, P. L. 2010. The Ireviken Event: a Silurian OAE. Geological Society of America Abstracts with Programs 42 (5), 561.Google Scholar
Hammarlund, E. U., Dahl, T. W., Harper, D. A. T., Bond, D. P. G., Nielsen, A. T., Bjerrum, C. J., Schovsbo, N. H., Schönlaub, H. P., Zalasiewicz, J. A. & Canfield, D. E. 2012. A sulfidic driver for the end-Ordovician mass extinction. Earth and Planetary Science Letters 331–332, 128–39.CrossRefGoogle Scholar
Harper, D. A. T., Hammarlund, E. U. & Rasmussen, C. M. Ø. 2014. End Ordovician extinctions: a coincidence of causes. Gondwana Research 25, 1294–307.CrossRefGoogle Scholar
Hartz, E. & Torsvik, T. H. 2002. Baltica upside down: a new plate tectonic model for Rodinia and the Iapetus Ocean. Geology 30, 255–8.2.0.CO;2>CrossRefGoogle Scholar
Hatch, J. R. & Leventhal, J. S. 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chemical Geology 99, 6582.CrossRefGoogle Scholar
Jeppsson, L. 1990. An oceanic model for lithological and faunal changes tested on the Silurian record. Journal of the Geological Society, London 147, 663–74.CrossRefGoogle Scholar
Johnson, M. E. 2006. Relationship of Silurian sea-level fluctuations to oceanic episodes and events. GFF 128, 123–9.CrossRefGoogle Scholar
Johnson, M. E. 2010. Tracking Silurian eustasy: alignment of empirical evidence or pursuit of deductive reasoning? Palaeogeography, Palaeoclimatology, Palaeoecology 296, 276–84.CrossRefGoogle Scholar
Jones, B. & Manning, D. A. C. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstone. Chemical Geology 111, 111–29.CrossRefGoogle Scholar
Kaljo, D. & Martma, T. 2006. Application of carbon isotope stratigraphy to dating the Baltic Silurian rocks. GFF 128, 123–9.CrossRefGoogle Scholar
Kozłowski, W. 2008. Lithostratigraphy and regional significance of the Nowa Słupia Group (Upper Silurian) of the Łysogóry Region (Holy Cross Mountains, Central Poland). Acta Geologica Polonica 58, 4374.Google Scholar
Kremer, B. 2005. Mazuelloids: product of post-mortem phosphatization of acanthomorphic acritarchs. Palaios 20, 2736.CrossRefGoogle Scholar
Lallier-Verges, E., Bertrand, P. & Desprairies, A. 1993. Organic matter composition and sulfate reduction intensity in Oman Margin sediments. Marine Geology 112, 5769.CrossRefGoogle Scholar
Lehnert, O., Männik, P., Joachimski, M. M., Calner, M. & Frýda, J. 2010. Palaeoclimate perturbations before the Sheinwoodian glaciation: a trigger for extinctions during the ‘Ireviken Event’. Palaeogeography, Palaeoclimatology, Palaeoecology 296, 320–31.CrossRefGoogle Scholar
Loydell, D. K. 1998. Early Silurian sea-level changes. Geological Magazine 135, 447–71.CrossRefGoogle Scholar
Loydell, D. K. 2007. Early Silurian positive δ13C excursions and their relationship to glaciations, sea-level changes and extinction events. Geological Journal 42, 531–46.CrossRefGoogle Scholar
Loydell, D. K. & Frýda, J. 2007. Carbon isotope stratigraphy of the upper Telychian and lower Sheinwoodian (Llandovery–Wenlock, Silurian) of the Banwy River section, Wales. Geological Magazine 144, 1015–9.CrossRefGoogle Scholar
Lüning, S., Kolonic, S., Loydell, D. K. & Craig, J. 2003. Reconstruction of the original organic richness in weathered Silurian shale outcrops (Murzuq and Kufra basins, southern Libya). GeoArabia 8, 299308.CrossRefGoogle Scholar
Malec, J. 2006. Silurian in the Holy Cross Mountains. In 77th Meeting of the Polish Geological Society, Conference Volume (eds Skompski, S. & Żylińska, A.), pp. 3650 (in Polish).Google Scholar
Marynowski, L., Rakociński, M., Borcuch, E., Kremer, B., Schubert, B. A. & Jahren, A. H. 2011. Molecular and petrographic indicators of redox conditions and bacterial communities after F/F mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 306, 114.CrossRefGoogle Scholar
Marynowski, L., Zatoń, M., Rakociński, M., Filipiak, P., Kurkiewicz, S. & Pearce, T. J. 2012. Deciphering the upper Famennian Hangenberg Black Shale depositional environments based on multi-proxy record. Palaeogeography, Palaeoclimatology, Palaeoecology 346/347, 6686.CrossRefGoogle Scholar
McLaughlin, P. A., Emsbo, P. & Brett, C. E. 2012. Beyond black shales: the sedimentary and stable isotope records of oceanic anoxic events in a dominantly oxic basin (Silurian; Appalachian Basin, USA). Palaeogeography, Palaeoclimatology, Palaeoecology 367–368, 153–77.CrossRefGoogle Scholar
Melchin, M. J., Sadler, P. M. & Cramer, B. D. 2012. Chapter 21: The Silurian Period. In The Geologic Time Scale 2012 (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. & Ogg, G.), pp. 525–58. New York: Elsevier.CrossRefGoogle Scholar
Modliński, Z. & Szymański, B. 2001. The Silurian of the Nida, Holy Cross Mts. and Radom areas, Poland – a review. Geological Quarterly 45, 435–54.Google Scholar
Munnecke, A., Calner, M., Harper, D. A. T. & Servais, T. 2010. Ordovician and Silurian sea-water chemistry, sea level, and climate: a synopsis. Palaeogeography, Palaeoclimatology, Palaeoecology 296, 389413.CrossRefGoogle Scholar
Munnecke, A., Samtleben, C. & Bickert, T. 2003. The Ireviken Event in the lower Silurian of Gotland, Sweden – relation to similar Palaeozoic and Proterozoic events. Palaeogeography, Palaeoclimatology, Palaeoecology 195, 99124.CrossRefGoogle Scholar
Narkiewicz, M. 2002. Ordovician through earliest Devonian development of the Holy Cross Mts. (Poland): constraints from subsidence analysis and thermal maturity data. Geological Quarterly 46, 255–66.Google Scholar
Nawrocki, J., Dunlap, J., Pecskay, Z., Krzemiński, L., Żylińska, A., Fanning, M., Kozłowski, W., Salwa, S., Szczepanik, Z. & Trela, W. 2007. Late Neoproterozoic to Early Palaeozoic palaeogeography of the Holy Cross Mountains (Central Poland): an integrated approach. Journal of the Geological Society, London 164, 405–23.CrossRefGoogle Scholar
Neumann, T., Rausch, N., Leipe, T., Dellwig, O., Berner, Z., & Bottcher, M. E. 2005. Intense pyrite formation under low sulfate conditions in the Achterwasser lagoon, SW Baltic Sea. Geochimica et Cosmochimica Acta 69, 3619–30.CrossRefGoogle Scholar
Noble, P. J., Zimmerman, M. K., Holmden, Ch. & Lenz, A. C. 2005. Early Silurian (Wenlockian) δ13C profiles from the Cape Phillips Formation, Arctic Canada and their relation to biotic events. Canadian Journal of Earth Sciences 42, 1419–30.CrossRefGoogle Scholar
O'Brien, N. R. 1996. Shale lamination and sedimentary processes. In Palaeoclimatology and Palaeoceanography from Laminated Sediments (ed. Kemp, A. E. S.), pp. 2336. Geological Society of London, Special Publication no. 116.Google Scholar
Page, A., Zalasiewicz, J., Williams, M. & Popov, L. 2007. Were transgressive black shales a negative feedback modulating glacioeustasy in the Early Palaeozoic Icehouse? In Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies: Special Publication of the Geological Society of London (eds. Williams, M., Haywood, A. M., Gregory, F. J., Schmidt, D. N.), pp. 123–56. The Micropalaeontological Society.Google Scholar
Podhalańska, T. & Trela, W. 2007. Stratigraphy and sedimentary record of the Lower Silurian succession in the southern Holy Cross Mountains, Poland. Acta Palaeontologica Sinica 46 (Suppl), 397401.Google Scholar
Poprawa, P., Šljaupa, S., Stephenson, R. A. & Lazauskiene, J. 1999. Late Vendian–Early Palaeozoic tectonic evolution of the Baltic basin: regional implications from subsidence analysis. Tectonophysics 314, 219–39.CrossRefGoogle Scholar
Racka, M., Marynowski, L., Filipiak, P., Sobstel, M., Pisarzowska, A. & Bond, D. P. G. 2010. Anoxic Annulata Events in the Late Famennian of the Holy Cross Mountains (Southern Poland): geochemical and palaeontological record. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 549–75.CrossRefGoogle Scholar
Racki, G., Baliński, A., Wrona, R., Małkowski, K., Drygant, D. & Szaniawski, H. 2012. Faunal dynamics across the Silurian–Devonian positive isotope excursions (δ13C, δ18O) in Podolia, Ukraine: comparative analysis of the Ireviken and Klonk events. Acta Palaeontologica Polonica 57, 795832.CrossRefGoogle Scholar
Rimmer, S. M. 2004. Geochemical paleoredox indicators in Devonian–Mississipian black shales, Central Appalachian Basin (USA). Chemical Geology 206, 373–91.CrossRefGoogle Scholar
Ross, D. A. & Degens, E. T. 1974. Recent sediments of the Black Sea. In Black Sea – Geology, Chemistry, and Biology (eds Degens, E. T. & Ross, D. A.), pp. 183–99. Association of American Petroleum Geologists Memoir 20.Google Scholar
Ross, C. A. & Ross, J. P. R. 1996. Silurian sea-level fluctuations. In Paleozoic Sequence Stratigraphy: Views from the North American Craton (eds Witzke, B. J., Ludvigson, G. A., Day, J.), pp. 187–92. Geological Society of America Special Paper 306.Google Scholar
Rubinowski, Z. 1969. Position of the siderite-pyrite mineralization in the Palaeozoic core of the Holy Cross Mountains. Annales de la Société Géologique de Pologne 39, 721–2 (in Polish).Google Scholar
Sageman, B. B. & Lyons, T. W. 2004. Geochemistry of fine-grained sediments and sedimentary rocks. In Sediments, Diagenesis, and Sedimentary Rocks; Treatise on Geochemistry, vol. 7 (ed. MacKenzie, F.), pp. 115–58. New York: Elsevier.Google Scholar
Schallreuter, R. 1984. Framboidal pyrite in deep sea sediments. In Initial Reports of the Deep Sea Drilling Project, vol. 75 (eds Hay, W. W., Sibuet, J.-C., Barron, E. J., Brassell, S., Dean, W. E., Huc, A.Y., Keating, B. H., McNulty, C. L., Meyers, P. A., Nohara, M., Schallreuter, R. E., Steinmetz, J. C., Stow, D. & Stradner, H.), pp. 875–91. Washington, DC: US Government Printing Office.Google Scholar
Schieber, J. 1994. Evidence for episodic high energy events and shallow-water deposition in the Chattanooga Shale, Devonian, central Tennessee. U.S.A. Sedimentary Geology 93, 193208.CrossRefGoogle Scholar
Schieber, J. & Schimmelmann, A. 2006. High resolution pyrite framboid size distribution in Santa Barbara Basin sediments: implications for the study of black shales. Eos (Transactions, American Geophysical Union) 87 (36). Ocean Sciences Meeting Supplement, Abstract OS46A-11.Google Scholar
Schieber, J. & Schimmelmann, A. 2007. High resolution study of pyrite framboid distribution in varved Santa Barbara Basin sediments and implications for water-column oxygenation. Pacific Climate (PACLIM) 2007 Workshop, Asilomar State Beach and Conference Grounds, Pacific Grove, California, May 13–16, 2007 (poster presentation).Google Scholar
Schieber, J., Southard, J. B. & Schimmelmann, A. 2010. Lenticular shale fabrics resulting from intermittent erosion of water-rich muds – interpreting the rock record in the light of recent flume experiments. Journal of Sedimentary Research 80, 119–28.CrossRefGoogle Scholar
Smolarek, J., Marynowski, L., Spunda, K. & Trela, W. 2014. Vitrinite equivalent reflectance of Silurian black shales from the Holy Cross Mountains, Poland. Mineralogia 45, 7996.CrossRefGoogle Scholar
Spengler, A. E. & Read, J. F. 2010. Sequence development on a sediment-starved, low accommodation epeiric carbonate ramp: Silurian Wabash Platform, USA mid-continent during icehouse to greenhouse transition. Sedimentary Geology 224, 84115.CrossRefGoogle Scholar
Swanner, E. D., Planavsky, N. J., Lalonde, S. V., Robbins, L. J., Bekker, A., Rouxel, O. J., Saito, M. A., Kappler, A., Mojzsis, S. J. & Konhauser, K. O. 2014. Cobalt and marine redox evolution. Earth and Planetary Science Letters 390, 253–63.CrossRefGoogle Scholar
Tomczyk, H. & Tomczykowa, E. 1976. Development of Ashgill and Llandovery sediments in Poland. In The Ordovician System (ed. Basset, M.), pp. 327449. Cardiff: University of Wales Press and The National Museum of Wales.Google Scholar
Torsvik, T. H. & Rehnström, E. F. 2001. Cambrian palaeomagnetic data from Baltica: implications for true polar wander and Cambrian palaeogeography. Journal of the Geological Society, London 158, 321–9.CrossRefGoogle Scholar
Trela, W. 2006. Lithostratigraphy of the Ordovician in the Holy Cross Mountains. Przegląd Geologiczny 54, 622–31 (in Polish with English summary).Google Scholar
Trela, W. & Salwa, S. 2007. Litostratygrafia dolnego syluru w odsłonięciu Bardo Stawy (południowa część Gór Świętokrzyskich): związek ze zmianami poziomu morza i cyrkulacją oceaniczną;. Przegląd Geologiczny 55, 971–78.Google Scholar
Tribovillard, N., Algeo, T. J., Lyons, T. & Riboulleau, A. 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology 232, 1232.CrossRefGoogle Scholar
Vandenbroucke, T. R. A., Munnecke, A., Leng, M. J., Bickert, T., Hints, O., Gelsthorpe, D., Maier, G. & Servais, T. 2013. Reconstructing the environmental conditions around the Silurian Ireviken Event using the carbon isotope composition of bulk and palynomorph organic matter. Geochemistry Geophysics Geosystems 14, 86101.CrossRefGoogle Scholar
Wang, L., Shi, X. & Jiang, G. 2012. Pyrite morphology and redox fluctuations recorded in the Ediacaran Doushantuo Formation. Palaeogeography, Palaeoclimatology, Palaeoecology 333–334, 218–27.CrossRefGoogle Scholar
Wignall, P. B. 1991. Test of the concepts of sequence stratigraphy in the Kimmeridgian (Late Jurassic) of England and northern France. Marine & Petroleum Geology 8, 430–41.CrossRefGoogle Scholar
Wignall, P. B. 1994. Black Shales. Oxford: Clarendon Press.Google Scholar
Wignall, P. B., Bond, D. P. G., Kuwahara, K., Kakuwa, Y., Newton, R. J. & Poulton, S. W. 2010. An 80 million year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino-Tamba terrane, SW Japan, and the origin of four mass extinctions. Global and Planetary Change 71, 109–23.CrossRefGoogle Scholar
Wignall, P. B. & Maynard, J. R. 1993. The sequence stratigraphy of transgressive black shales. American Association of Petroleum Geologists Studies in Geology 37, 3547.Google Scholar
Wignall, P. B. & Newton, R. 1998. Pyrite framboid diameter as a measure of oxygen-deficiency in ancient mudrocks. American Journal of Science 298, 537–52.CrossRefGoogle Scholar
Wilde, P., Barry, W. B. N. & Quinby-Hunt, M. S. 1991. Silurian oceanic and atmospheric circulation and chemistry. Special Papers in Palaeontology 44, 123–43.Google Scholar
Wilkin, R. T. & Arthur, M. A. 2001. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea: Evidence for Late Pleistocene to Holocene excursions of the O2–H2S redox transition. Geochimica et Cosmochimica Acta 65, 1399–416.CrossRefGoogle Scholar
Wilkin, R. T., Barnes, H. L. & Brantley, S. L. 1996. The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochimica et Cosmochimica Acta 60, 3897–912.CrossRefGoogle Scholar
Zhou, Ch. & Jiang, S.-Y. 2009. Palaeoceanographic redox environments for the lower Cambrian Hetang Formation in South China: evidence from pyrite framboids, redox sensitive trace elements, and sponge biota occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology 271, 279–86.CrossRefGoogle Scholar
Zhou, L., Wignall, P. B., Su, J., Feng, Q., Xie, S., Zhao, L. & Huang, J. 2012. U/Mo ratios and δ98/95Mo as local and global redox proxies during mass extinction events. Chemical Geology 324–325, 99107.CrossRefGoogle Scholar