Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T06:07:21.137Z Has data issue: false hasContentIssue false

Mass flow deposits on a mid-Tertiary carbonate shelf, southern New Zealand

Published online by Cambridge University Press:  01 May 2009

Fiona M. Hyden
Affiliation:
Department of Geology, University of Otago, P.O. Box 56, Dunedin, New Zealand

Summary

Sheet-like and channel-filling conglomerates and pebbly biomicrudites occur within a sequence of cross-stratified shallow-water bioclastic limestones, the Forest Hill Formation of Late Oligocene to Early Miocene age. The largest channel, 50 m wide, 9 m deep, and at least 1.2 km long, is infilled with four separate conglomerate units of pebble- to boulder-sized limestone lithoclasts in a sparse muddy matrix (biomicrudite). Both the conglomerates and associated pebbly biomicrudites possess features characteristic of high concentration mass flows - both of laminar flow (preferred clast orientation, inverse grading or massive bedding) and of turbulent flow (normal coarse-tail or distribution grading and stratification). Clast imbrication (a- or b-axes) is suggestive of gradual deposition. Some flows travelled far enough to allow both vertical and horizontal differentiation of the coarse sediment. Facies models which have been proposed for conglomerates of deep water (turbidite) association can also be applied to the small-scale neritic conglomerates. Formation and remobilisation of such coarse grained facies in a shelf setting is attributed to eustatic sea-level changes and/or to local tectonism.

Type
Articles
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aalto, K. R. 1972. Flysch pebble conglomerate of the Cap-des-Rosiers Formation (Ordovician), Gaspé Peninsula, 'Quebec. J. sedim. Petrol. 42, 922–6.Google Scholar
Aalto, K. R. 1976. Sedimentology of a mélange: Franciscan of Trinidad, California. J. sedim. Petrol. 46, 913–29.CrossRefGoogle Scholar
Bagnold, R. A. 1954. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. Lond. A 225, 4963.Google Scholar
Blatt, H., Middleton, G. & Murray, R. 1972. Origin of Sedimentary Rocks. New Jersey: Prentice-Hall.Google Scholar
Bouma, A. H. 1962. Sedimentology of Some Flysch Deposits. Amsterdam: Elsevier.Google Scholar
Carter, A. N. 1978. Contrasts between oceanic and continental ‘unconformities’ in the Oligocene of the Australian region. Nature, Lond. 274, 152–4.CrossRefGoogle Scholar
Carter, R. M. & Landis, C. A. 1972. Correlative Oligocene unconformities in southern Australasia. Nature, Phys. Sci. Lond. 237, 1213.CrossRefGoogle Scholar
Coombs, D. S., Landis, C. A., Norris, R. J., Sinton, J. M., Borns, D. J. & Craw, D. 1976. The Dun Mountain ophiolite belt, New Zealand, its tectonic setting, constitution and origin, with special reference to the southern portion. Am. J. Sci. 276, 561603.CrossRefGoogle Scholar
Davies, I. C. & Walker, R. G. 1974. Transport and deposition of resedimented conglomerates: the Cap Enrage Formation, Cambro-Ordovician, Gaspé, Quebec. J. sedim. Petrol. 44, 1200–16.Google Scholar
Fisher, R. V. 1971. Features of coarse-grained, high-concentration fluids and their deposits. J. sedim. Petrol. 41, 916–27.Google Scholar
Fisher, R. V. & Mattinson, J. M. 1968. Wheeler Gorge turbidite-conglomerate series, California; Inverse grading. J. sedim. Petrol. 38, 1013–23.Google Scholar
Fleming, C. A. 1979. The Geological History of New Zealand and Its Life. Auckland University Press, Oxford University Press.Google Scholar
Folk, R. L. 1969. Practical petrographic classification of limestones. Bull. Am. Ass. Petrol. Geol. 43, 138.Google Scholar
Hendry, H. E. 1976. The orientation of discoidal clasts in resedimented conglomerates, Cambro-Ordovician, Gaspé, Eastern Quebec. J. sedim. Petrol. 46, 4855.Google Scholar
Hyden, F. M. 1975. Mid-Tertiary sedimentation patterns east of the Longwood-Takitimu Ranges, Southland. Abstr. geol. Soc. N.Z. conf. Kaikoura, p. 31.Google Scholar
Jeletzky, J. A. 1975. Hesquiat Formation (new): A neritic channel and interchannel deposit of Oligocene age, western Vancouver Island, British Columbia. Geol. Surv. Canada Pap. 75–32.Google Scholar
Johnson, A. M. 1970. Physical Processes in Geology. New Jersey: Freeman, Cooper.Google Scholar
Johnson, A. M. & Hampton, M. A. 1969. Subaerial and subaqueous flow of slurries. Final Rept. U.S.G.S.; School of Earth Sciences, Stanford University, California.Google Scholar
Keith, B. D. & Friedman, G. M. 1977. A slope-fan-basin-plain model, Taconic Sequence, New York and Vermont. J. sedim. Petrol. 47, 1220–41.Google Scholar
Lewis, D. W. 1976. Subaqueous debris flows of Early Pleistocene age at Motunau, North Canterbury, New Zealand. N.Z. Jl Geol. Geophys. 19, 535–67.CrossRefGoogle Scholar
McKellar, I. C. 1969. Sheet S169 - Winton: Geological Map of New Zealand, 1:63360. N.Z. Dep. Scient. Ind. Res., Wellington.Google Scholar
Middleton, G. V. 1967. Experiments on density and turbidity currents. III. Deposition of sediment. Can. Jl Earth Sci. 4, 475505.CrossRefGoogle Scholar
Middleton, G. V. 1970. Experimental studies related to the problems of flysch sedimentation. In Flysch Sedimentology in North America (ed. Lajoie, J.). Spec. Pap. Geol. Assoc. Canada 7, 253–72.Google Scholar
Moore, D. G. & Curray, J. R. 1974. Midplate continental margin geosynclines; growth processes and Quaternary modifications. In Modern and Ancient Geosynclinal Sedimentation (ed. Dott, R. H. Jr and Shaver, R. H.). Spec. Pub. Soc. Econ. Paleont. Mineral. 19, 2635.CrossRefGoogle Scholar
Mutch, A. R. 1964. Sheet S159 - Morley: Geological Map of New Zealand, 1:63360. Dep. Scient. Ind. Res. Wellington.Google Scholar
Mutti, E. & Ricci Lucchi, F. 1972. Le Torbiditi dell'Appenino settentrionale: introduzione all'analisi di facies. Mem. Soc. Geol. Ital. 11, 161–99.Google Scholar
Nelson, C. H. & Nilsen, T. H. 1974. Depositional trends of modern and ancient deep-sea fans. In Modern and Ancient Geosynclinal Sedimentation (ed. Dott, R. H. Jr and Shaver, R. H.). Spec. Pub. Soc. Econ. Paleont. Mineral. 19, 6991.CrossRefGoogle Scholar
Norris, R. J., Carter, R. M. & Turnbull, I. M. 1978. Cainozoic sedimentation in basins adjacent to a major continental transform boundary in southern New Zealand. Jl Geol. Soc. Lond. 135, 191205.CrossRefGoogle Scholar
Passega, R. 1953. Sedimentary trends, Colorado Member of Oficina Formation, San Roque, Anzoategui, Venezuela. Bull. Am. Ass. Petrol. Geol. 37, 331–39.Google Scholar
Piper, D. J. W., Panagos, A. G. & Pe, G. G. 1978. Conglomeratic flysch, western Greece. J. sedim. Petrol. 48, 117–26.Google Scholar
Pitman, W. C. III 1978. Relationship between eustacy and stratigraphic sequences of passive margins. Bull. Geol. Soc. Am. 89, 13891403.2.0.CO;2>CrossRefGoogle Scholar
Rees, A. I. 1968. The production of preferred orientation in a concentrated dispersion of elongated and flattened grains. Jl Geol. 76, 457–65.CrossRefGoogle Scholar
Sanders, J. E. 1965. Primary sedimentary structures formed by turbidity currents and related sedimentation mechanisms. In Primary Sedimentary Structures and Their Hydrodynamic Interpretation (ed. Middleton, G. V.). Spec. Pub. Soc. Econ. Paleont. Mineral. 12, 192219.CrossRefGoogle Scholar
Sedimentation Seminar, 1969. Bethel Sandstone (Missippian) of western Kentucky and south-central Indiana, a submarine channel fill. Kentucky Geol. Surv. Rept. Investig. S10 no. 11, 624.Google Scholar
Shepard, F. P. 1973. Submarine Geology, 3rd ed. New York: Harper and Row.Google Scholar
Shepard, F. P. & Dill, R. F. 1966. Submarine Canyons and other Sea Valleys. Chicago: Rand McNally.Google Scholar
Stanley, D. J. & Kelling, G. (eds.) 1978. Sedimentation in Submarine Canyons, Fans, and Trenches. Stroudsburg, Pa.: Dowden, Hutchinson & Ross.Google Scholar
Vail, P. R., Mitchum, R. M. Jr & Thompson, S. III. 1977. Seismic stratigraphy and global changes of sea level. 4. Global cycles of relative changes of sea level. Mem. Am. Ass. Petrol. Geol. 26, 8397.Google Scholar
Walker, R. G. 1975. Generalised facies models for resedimented conglomerates of turbidite association. Bull. Geol. Soc. Am. 86, 737–48.2.0.CO;2>CrossRefGoogle Scholar
Walker, R. G. 1977. Deposition of Upper Mesozoic resedimented conglomerates and associated turbidites in southwestern Oregon. Bull. Geol. Soc. Am. 88, 273–85.2.0.CO;2>CrossRefGoogle Scholar
Walker, R. G. 1978. Deep-water sandstone facies and ancient submarine fans: models for exploration for stratigraphic traps. Bull. Am. Ass. Petrol. Geol. 62, 932–66.Google Scholar
Walker, R. G. & Mutti, E. 1973. Turbidite facies and facies associations. In Turbidites and Deep Water Sedimentation (ed. Middleton, G. V. and Bouma, A. H.). Soc. Econ. Paleont. Mineral. Pacific Sect., pp. 119–57.Google Scholar
Whitaker, J. H. McD. 1974. Ancient submarine canyons and fan valleys. In Modern and Ancient Geosynclinal Sedimentation (ed. Dott, R. H. Jr and Shaver, R. H.). Spec. Pub. Soc. Econ. Paleont. Mineral. 19, 106–25.CrossRefGoogle Scholar
Wood, B. L. 1966. Sheet 24 - Invercargill: Geological Map of New Zealand, 1:250000. N.Z. Dep. Scient. Ind. Res., Wellington.Google Scholar