Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T01:10:43.478Z Has data issue: false hasContentIssue false

A mechanism forming silicic segregations from basaltic magma discovered in igneous rocks of Western Sicily

Published online by Cambridge University Press:  01 May 2009

G. Lucido
Affiliation:
Istituto di Mineralogia, Petrografia e Geochimica della Università di Palermo, Via Archirafi 36, 90123 Palermo, Italy

Abstract

Summary. Mechanisms forming silicic segregations from basaltic magmas are considered of primary importance when dealing with magmatic problems. However, the processes which give rise to silicic segregations from basaltic magmas are so far obscure. Fortunately, the discovery of spheroidal felsic masses in some basic rocks of Western Sicily throws light on this subject. To clarify the relationships between felsic and basic fractions particular attention has been paid to the interactions which occurred at their contact. Textural evidence indicates that the accretion mechanism of the Sicilian felsic segregations tends to obliterate the silicate liquid immiscibility effects and suggests that the formation of silicic segregations is a consequence of liquid unmixing phenomena.

Type
Articles
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bender, J. F., Hanson, G. N. & Bence, A. E. 1982. The Cortlandt complex: evidence for large-scale liquid immiscibility involving granodiorite and diorite magmas. Earth Planet. Sci. Lett. 58, 330–44.CrossRefGoogle Scholar
Bowen, N. L. 1928. The Evolution of the Igneous Rocks. Princeton: Princeton University Press.Google Scholar
Cawthorn, R. G., Mclver, J. R., McCarthy, T. S., Wyatt, B. A., Ferguson, J. & Barnes, S. J. 1979. Possible liquid immiscibility textures in high magnesia basalts from the Ventersdorp Supergroup, South Africa. J. Geol. 87, 105–13.CrossRefGoogle Scholar
Charles, R. J. 1969. The origin of immiscibility in silicate solutions. Physics Chem. Glasses 10, 169–78.Google Scholar
Currie, K. L. 1972. A criterion for predicting liquid immiscibility in silicate melts. Nature, Phys. Sci. 240, 66–8.Google Scholar
Ferguson, J. & Currie, K. L. 1971. Evidence of liquid immiscibility in alkaline ultrabasic dikes at Callander Bay, Ontario. J. Petrol. 12, 561–85.Google Scholar
Ferguson, J. & Currie, K. L. 1972. Silicate immiscibility in the Ancient ‘Basalts’ of the Barberton Mountain Land, Transvaal. Nature, Phys. Sci. 235, 86–9.Google Scholar
Furnes, H., Malm, O. A. & Robins, B. 1981. Evidence for liquid immiscibility in Middle Jurassic pyroclastics from the North Sea, and alteration trends of the glass phases. N. Jb. Miner. Abh. 141, 309–23.Google Scholar
Gamble, J. A. 1979. Some relationships between coexisting granitic and basaltic magma and the genesis of hybrid rocks in the Tertiary Central Complex of Slieve Gullion, northeast Ireland. J. Volcanol. Geotherm. Res. 5, 297316.Google Scholar
Gélinas, L., Brooks, C. & Trzciensk, W. E. Jr 1976. Archean variolites-quenched immiscible liquids. Can. J. Earth Sci. 13, 210–30.CrossRefGoogle Scholar
Greig, J. W. 1927. Immiscibility in silicate melts. Am. J. Sci. 13, 144, 133–54.CrossRefGoogle Scholar
Hess, P. C. 1977. Structure of silicate melts. Can. Mineral. 15, 162–78.Google Scholar
Hess, P. C., Rutherford, M. J., Guillemette, R. N., Ryerson, F. J. & Tuchfeld, H. A. 1975. Residual products of fractional crystallization of lunar magmas: An experimental study. Proc. Sixth Lunar Sci. Conf. Geochim. Cosmochim. Acta (suppl. 6) 1, 895909.Google Scholar
Irvine, T. N. 1975. The silica immiscibility effect in magmas. Yb. Carnegie Instn Wash. 74, 484–92.Google Scholar
Irvine, T. N. 1976. Metastable liquid immiscibility and MgO-FeO-SiO2 fractionation patterns in the system Mg2SiO4-Fe2SiO4-CaAl2Si2O8-KAlSi3O8-SiO2. Yb. Carnegie Instn Wash. 75, 597611.Google Scholar
Jahns, R. H. & Burnham, C. W. 1969. Experimental studies of pegmatite genesis: I. A model for the derivation and crystallization of granitic pegmatites. Econ. Geol. 64, 843–64.Google Scholar
Khitarov, N. I., Pugin, V. A., Soldatov, I. A. & Schevaleevsky, I. D. 1973. On the immiscibility in olivine tholeiite (experimental data). Geokhimiya 12, 1763–71.Google Scholar
Kogarko, L. N. 1974. Rôle of volatiles. In The Alkaline Rocks (ed. H., Sørensen), pp. 474–87. New York: J. Wiley.Google Scholar
Lucido, G. 1981. Silicate liquid immiscibility in alkaline rocks of western Sicily. Chem. Geol. 31, 335–46.Google Scholar
Markov, V. K., Nasedkin, V. V. & Ryabinin, Y. N. 1972. Liquation in ultramafic alkalic magma at high pressures. Akad. Nauk S.S.S.R. Doklady 207, 428–29.Google Scholar
Massion, P. J. & Koster van Groos, A. F. 1973. Liquid immiscibility in silicates. Nature Phys. Sci. 245, 60–3.CrossRefGoogle Scholar
McBirney, A. R. & Nakamura, Y. 1974. Immiscibility in late-stage magmas of the Skaergaard intrusion. Yb. Carnegie Instn Wash. 73, 348–52.Google Scholar
Nakamura, Y. 1974. The system K2O-FeO-Al2O3-SiO2 at 15 kb. Yb. Carnegie Instn Wash. 73, 352–4.Google Scholar
Naslund, H. R. 1976. Liquid immiscibility in the system KAlSi3O8-NaAlSi3O8-FeO-Fe2O3-SiO2 and its application to natural magmas. Yb. Carnegie Instn Wash. 75, 592–7.Google Scholar
Navrotsky, A. 1981. Thermodynamics of mixing in silicate glasses and melts. In Thermodynamics of Minerals and Melts, vol. 1 (ed. Newton, R. C., A., Navrotsky & Wood, B. J.), pp. 189205.CrossRefGoogle Scholar
Philpotts, A. R. 1979. Silicate liquid immiscibility in tholeiitic basalts. J. Petrol. 20, 99118.CrossRefGoogle Scholar
Philpotts, A. R. & Hodgson, C. J. 1968. Role of liquid immiscibility in alkaline rock genesis. Rep. Twenty-third Int. Geol. Congr. 2, 175–88.Google Scholar
Rock, N. M. S. 1977. The nature and origin of lamprophyres: some definitions, distinctions and derivations. Earth. Sci. Rev. 13, 123–69.Google Scholar
Roedder, E. 1978. Silicate liquid immiscibility in magmas and in the system K2O-FeO-Al2O3-SiO2: an example of serendipity. Geochim. Cosmochim. Acta 42, 1597–617.Google Scholar
Roedder, E. 1979. Silicate liquid immiscibility in magmas. In The Evolution of the Igneous Rocks (ed. Yoder, H. S.), pp. 1557. Princeton, New Jersey: Princeton University Press.Google Scholar
Roedder, E. & Weiblen, P. W. 1970. Silicate liquid immiscibility in lunar magmas, evidenced by melt inclusions in lunar rocks. Science 167, 641–4.CrossRefGoogle ScholarPubMed
Rutherford, M. J., Hess, P. C. & Daniel, G. H. 1974. Experimental liquid line of descent and liquid immiscibility for basalt 70017. Proc. Fifth Lunar Sci. Conf., Geochim. Cosmochim. Acta (suppl. 5) 1, 569–83.Google Scholar
Ryerson, F. J. & Hess, P. C. 1978. Implications of liquid-liquid distribution coefficients to mineral-liquid partitioning. Geochim. Cosmochim. Acta 42, 921–32.Google Scholar
Sakuyama, M. & Kusciro, I. 1979. Vesiculation of hydrous andesitic melt and transport of alkalies by separated vapor phase. Contr. Mineral. Petrol. 71, 61–6.Google Scholar
Visser, W. & Koster van Groos, A. F. 1979(a). Effect of pressure on liquid immiscibility in the system K2O-FeO-Al2O3-SiO2-P2O. Am. J. Sci. 279, 1160–75.Google Scholar
Visser, W. & Koster van Groos, A. F. 1979(b). Phase relations in the system K2O-FeO-Al2O3-SiO2 at 1 atmosphere with special emphasis on low temperature liquid immiscibility. Am. J. Sci. 279, 7091.CrossRefGoogle Scholar
Watson, E. B. 1976. Two-liquid partition coefficients: experimental data and geochemical implications. Contr. Miner. Petrol. 56, 119–34.Google Scholar
Watson, E. B. & Naslund, H. R. 1977. The effect of pressure on liquid immiscibility in the system K2O-FeO-Al2O3-SiO2-CO2. Yb. Carnegie Instn Wash. 76, 410–14.Google Scholar