Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T22:15:56.609Z Has data issue: false hasContentIssue false

The Neogene–Recent Hatay Graben, South Central Turkey: graben formation in a setting of oblique extension (transtension) related to post-collisional tectonic escape

Published online by Cambridge University Press:  11 June 2008

SARAH J. BOULTON*
Affiliation:
School of Earth, Ocean and Environmental Sciences, University of Plymouth, Fitzroy Building, Plymouth, Devon, PL4 8 AA, UK School of GeoSciences, Grant Institute, Kings Buildings, West Mains Road, Edinburgh, EH3 9LP, UK
ALASTAIR H. F. ROBERTSON
Affiliation:
School of GeoSciences, Grant Institute, Kings Buildings, West Mains Road, Edinburgh, EH3 9LP, UK
*
Author for correspondence: sarah.boulton@plymouth.ac.uk

Abstract

Structural data and a regional tectonic interpretation are given for the NE–SW-trending Hatay Graben, southern Turkey, within the collision zone of the African (Arabian) and Eurasian (Anatolian) plates. Regional GPS and seismicity data are used to shed light on the recent tectonic development of the Hatay Graben. Faults within Upper Cretaceous to Quaternary sediments are categorized as of first-, second- and third-order type, depending on their scale, location and character. Normal, oblique and strike-slip faults predominate throughout the area.The flanks of the graben are dominated by normal faults, mainly striking parallel to the graben, that is, 045–225°. In contrast, the graben axis exhibits strike-slip faults, trending 100–200°, together with normal faults striking 040–060° and 150–190° (a subset strikes 110–130°). Similarly orientated normal faults occur throughout Upper Cretaceous to Pliocene sediments, whereas strike-slip faults are mostly within Pliocene sediments near the graben axis. Stress inversion of slickenline data from mostly Pliocene sediments at ten suitable locations (all near the graben axis) show that σ3 directions (minimum stress axis ≈ extension direction) are uniform in the northeast of the graben but orientated at a high angle to the graben margins. More variable σ3 directions in the southwest may reflect local block rotations. During Miocene times, the Arabian and Anatolian plates collided, forming a foreland basin associated with flexurally controlled normal faulting. During the Late Miocene there was a transition from extension to transtension (oblique extension). The neotectonic Hatay Graben formed during the Plio-Quaternary in a transtensional setting. In the light of modern and ancient comparisons, it is suggested that contemporaneous strain was compartmentalized into large-scale normal faults on the graben margins and mainly small-scale strike-slip faults near the graben axis. Overall, the graben reflects Plio-Quaternary westward tectonic escape from a collision zone towards the east to a pre- or syn-collisional zone to the west in the Mediterranean Sea.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aksu, A. E., Calon, T. J., Hiscott, R. N. & Yaşar, D. 2000. Anatomy of the North Anatolian Fault Zone in the Marmara Sea, Western Turkey: extensional basins above a continental transform. GSA Today 10 (6), 37.Google Scholar
Akyuz, H. S., Altunel, E., Karabacak, V. & Yalciner, C. C. 2006. Historical earthquake activity of the northern part of the Dead Sea Fault Zone, southern Turkey. Tectonophysics 426, 281–93.CrossRefGoogle Scholar
Al-Tarazi, E. A. 1998. Regional seismic hazard study for the Eastern Mediterranean Trans-Jordan, Levant and Antakya and Sinai region. Journal of African Earth Sciences 28 (3), 743–50.CrossRefGoogle Scholar
Angelier, J. 1984. Tectonic analysis of fault slip data sets. Journal of Geophysical Research 89, 5835–48.CrossRefGoogle Scholar
Arpat, E. & Şaroğlu, F. 1972. The East Anatolian Fault System; thoughts on its development. Bulletin of the Mineral Research and Exploration Institute of Turkey 78, 33–9.Google Scholar
Barka, A. A. & Kadinsky-Cade, C. 1988. Strike-slip geometry in Turkey and its influence on earthquake activity. Tectonics 7, 663–84.CrossRefGoogle Scholar
Bartholomew, I. D., Peters, J. M. & Powell, C. M. 1993. Regional structural evolution of the North Sea: oblique slip and reactivation of basement lineaments. In Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference (ed. Parker, J. R.), pp. 1109–22. Geological Society of London.Google Scholar
Ben-Avraham, Z. 1978. The structure and tectonic setting of the Levant continental margin, eastern Mediterranean. Tectonophysics 48, 313–31.CrossRefGoogle Scholar
Ben-Avraham, Z., Tibor, G., Liminov, A. F., Leybov, M. B., Ivanov, M. K., Tokarev, M. Y. & Woodside, J. M. 1995. Structure and tectonics of the Eastern Cyprean Arc. Marine and Petroleum Geology 12, 263–71.CrossRefGoogle Scholar
Bott, M. H. P. 1959. The mechanics of oblique slip faulting. Geological Magazine 96, 109–17.CrossRefGoogle Scholar
Boulton, S. J. & Robertson, A. H. F. 2007. The Miocene of the Hatay area, S Turkey: transition from the Arabian passive margin to an underfilled foreland basin related to closure of the Tethys Ocean. Sedimentary Geology 198, 93124.CrossRefGoogle Scholar
Boulton, S. J., Robertson, A. H. F., Ellam, R. M., Safak, Ü. & Ünlügenç, U. C. 2007. Strontium isotopic and micropalaeontological dating used to redefine the stratigraphy of the Neotectonic Hatay Graben, southern Turkey. Turkish Journal of Earth Sciences 16, 141–79.Google Scholar
Boulton, S. J., Robertson, A. H. F. & Ünlügenç, Ü. C. 2006. Tectonic and sedimentary evolution of the Cenozoic Hatay Graben, Southern Turkey: A two-phase, foreland basin then transtensional basin model. In Tectonic Development of the Eastern Mediterranean Region (eds Robertson, A. H. F. & Mountrakis, D.), pp. 613–34. Geological Society of London, Special Publication no. 260.Google Scholar
Brew, G., Lupa, J., Barazangi, M., Sawaf, T., Al-Imam, A. & Zaza, T. 2001. Structure and tectonic development of the Ghab Basin and the Dead Sea Fault System, Syria. Journal of the Geological Society, London 158, 665–74.CrossRefGoogle Scholar
Clifton, A. E., Schlische, R. W., Withjack, M. O. & Ackermann, R. V. 2000. Influence of rift obliquity on fault-population systematics: results of experimental clay models. Journal of Structural Geology 22, 14911509.CrossRefGoogle Scholar
De Paola, N., Holdsworth, R. E., McCaffery, K. J. W. & Barchi, M. R. 2005. Partitioned transtension: an alternative to basin inversion models. Journal of Structural Geology 27 (4), 607–25.CrossRefGoogle Scholar
De Paola, N., Holdsworth, R. E. & McCaffery, K. J. W. 2005. The influence of lithology and pre-existing structures on reservoir-scale faulting patterns in transtensional rift zones. Journal of the Geological Society, London 162, 471–80.CrossRefGoogle Scholar
Dewey, J. F. 2002. Transtension in arcs and orogens. International Geology Review 44, 402–39.CrossRefGoogle Scholar
Dewey, J. F. & Şengör, A. M. C. 1979. Aegean and surrounding regions: complex multiple and continuum tectonics on a convergent zone. Geological Society of America Bulletin 90, 7191.2.0.CO;2>CrossRefGoogle Scholar
Dubertret, L. 1955. Géologie des roches vertes du nord-ouest de la Syrie et du Hatay (Turquie). Notes et Mémoires de la Moyen Orient 6, 227 pp.Google Scholar
Dubois, A., Odonne, F., Massonnat, G., Lebourg, T. & Fabre, R. 2002. Analogue modelling of fault reactivation: tectonic inversion and oblique remobilisation of grabens. Journal of Structural Geology 24, 1741–52.CrossRefGoogle Scholar
Fossen, H. & Tikoff, B. 1993. The deformation matrix for simultaneous simple shearing, pure shearing and volume change, and its application to transpression–transtension tectonics. Journal of Structural Geology 15, 413–22.CrossRefGoogle Scholar
Freund, R. 1965. A model of the structural development of Israel and adjacent areas since the Upper Cretaceous times. Geological Magazine 102, 189205.CrossRefGoogle Scholar
Garfunkel, Z. & Ben-Avraham, Z. 1996. The structure of the Dead Sea Basin. Tectonophysics 255, 155–76.CrossRefGoogle Scholar
Guidoboni, E., Comastri, A. & Traina, G. 1994. Catalogue of ancient earthquakes in the Mediterranean area up to the 10th Century. Instituto Nazionale Geofisica, Italy, 504 pp.Google Scholar
Hardenberg, M. F. & Robertson, A H. F. 2007. Sedimentology of the NW margin of the Arabian plate and the SW–NE-trending Nahr El-Kabir half-graben in northern Syria during the latest Cretaceous and Cenozoic. Sedimentary Geology 201, 231–66.CrossRefGoogle Scholar
Harrison, R. W., Newell, W. L., Batihanli, H., Panayides, I., McGeehin, J. P., Mahan, S. A., Özhür, A., Tsiolakis, E. & Necdet, M. 2004. Tectonic framework and Late Cenozoic tectonic history of the northern part of Cyprus: implications for earthquake hazards and regional tectonics. Journal of Asian Earth Sciences 23, 191210.CrossRefGoogle Scholar
Jackson, J. 2001. Living with earthquakes: Know your faults. Journal of Earthquake Engineering 5, special issue 1, 5123.CrossRefGoogle Scholar
Kagan, Y. Y. 2003. Accuracy of modern global earthquake catalogs. Physics of the Earth and Planetary Interiors 135, 173209.CrossRefGoogle Scholar
Keep, M. & McClay, K. R. 1997. Analogue modelling of multiphase rift systems. Tectonophysics 273, 239–70.CrossRefGoogle Scholar
Kempler, D. & Garfunkel, Z. 1994. Structure and kinematics in the northeastern Mediterranean: a study of an irregular plate boundary. Tectonophysics 234, 1932.CrossRefGoogle Scholar
Kissel, C., Laj, C., Poisson, A. & Görür, N. 2003. Palaeomagnetic reconstruction of the Cenozoic evolution of the eastern Mediterranean. Tectonophysics 362, 199217.CrossRefGoogle Scholar
Krantz, R. W. 1991. Measurements of friction coefficients and cohesion for faulting and fault reactivation in laboratory model using sand and sand mixtures. Tectonophysics 188, 203–7.CrossRefGoogle Scholar
Le Pichon, X. & Angelier, J. 1979. The Aegean Arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics 60, 142.CrossRefGoogle Scholar
Liesa, C. L. & Lisle, R. J. 2004. Reliability of methods to separate stress tensors from heterogeneous fault-slip data. Journal of Structural Geology 26, 559–72.CrossRefGoogle Scholar
Lort, J. M. 1971. The tectonics of the eastern Mediterranean: a geophysical review. Reviews of Geophysics and Space Physics 9, 189216.CrossRefGoogle Scholar
Lovelock, P. E. R. 1984. A review of the tectonics of the northern Middle East region. Geological Magazine 121, 577–87.CrossRefGoogle Scholar
Lyberis, N. 1988. Tectonic evolution of the Gulf of Suez and the Gulf of Aqaba. Tectonophysics 153, 209–20.CrossRefGoogle Scholar
Lyberis, N., Yürür, T., Chorowitcz, J., Kasapoğlu, E. & Gündoğdu, N. 1992. The East Anatolian fault: an oblique collisional belt. Tectonophysics 204, 115.CrossRefGoogle Scholar
Mart, Y. & Rabinowitz, P. D. 1986. The northern Red Sea and the Dead Sea Rift. Tectonophysics 124, 85113.CrossRefGoogle Scholar
McClay, K. R. & White, M. J. 1995. Analogue modelling of orthogonal and oblique rifting. Marine and Petroleum Geology 12, 147–51.CrossRefGoogle Scholar
McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanli, I., Seeger, H., Tealeb, A., Toksoz, M. N. & Veis, G. 2000. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research, Solid Earth 105 (B3), 5695–719.CrossRefGoogle Scholar
McKenzie, D. P. 1978. Active tectonism in the Alpine–Himalayan belt: the Aegean Sea and the surrounding regions (tectonics of the Aegean region). Geophysical Journal of the Royal Astronomical Society 55, 217–54.CrossRefGoogle Scholar
McNeill, L. C., Mille, A., Minshull, T. A., Bull, J. M., Kenyon, N. H. & Ivanov, M. 2004. Extension of the North Anatolian Fault into the North Aegean Trough: Evidence for transtension, strain partitioning, and analogues for Sea of Marmara basin models. Tectonics 23 (2), TC2016. (doi:10.1029/2002TC001490), 12 pp.CrossRefGoogle Scholar
Morris, A., Anderson, M. W., Inwood, J. & Robertson, A. H. F. 2006. Palaeomagnetic insights into the evolution of the Neotethyan oceanic crust in the eastern Mediterranean. In Tectonic Development of the Eastern Mediterranean Region (eds Robertson, A. H. F. & Mountrakis, D.), pp. 351–72. Geological Society of London, Special Publication no. 260.Google Scholar
Muehlberger, R. W. 1981. The splintering of the Dead Sea Fault Zone in Turkey. Hacetepe University Earth Sciences 8, 123–30.Google Scholar
Nemcok, M. & Lisle, R. J. 1995. A stress inversion procedure for polyphase fault/slip data sets. Journal of Structural Geology 17 (10), 1445–53.CrossRefGoogle Scholar
Oudmayer, B. C. & Dejager, J. 1993. Fault reactivation and strike-slip in the southern North Sea. In Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference (ed. Parker, J. R.), pp. 1109–22. Geological Society of London.Google Scholar
Över, S., Kavak, K. Ş., Bellier, O. & Özden, S. 2004. Is the Amik Basin SE Turkey a triple junction area? Analyses of SPOT XS imagery and seismicity. International Journal of Remote Sensing 25 (19), 3857–72.CrossRefGoogle Scholar
Över, S., Ünlügenç, U. C. & Bellier, O. 2002. Quaternary stress regime change in the Hatay region, SE Turkey. Geophysical Journal International 148, 649–62.CrossRefGoogle Scholar
Perinçek, D. & Çemen, İ. 1990. The structural relationship between the East Anatolian and Dead Sea fault zones in Southeastern Turkey. Tectonophysics 172, 331–40.CrossRefGoogle Scholar
Pişkin, O., Delaloye, M., Selçuk, H. & Wagner, J. 1986. Guide to Hatay Geology, SE Turkey. Oflioliti 11, 87104.Google Scholar
Ramani, M. V. & Tikoff, B. 2002. Physical models of transtensional folding. Geology 30 (6), 523–6.2.0.CO;2>CrossRefGoogle Scholar
Reches, Z. & Dieterich, J. H. 1983. Faulting of rocks in three-dimensional strain fields: I. Failure of rocks in polyaxial, servo-control experiments. Tectonophysics 95, 111–32.CrossRefGoogle Scholar
Robertson, A. H. F. 1998. Mesozoic–Tertiary tectonic evolution of the easternmost Mediterranean area; integration of marine and land evidence. In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 160 (eds Robertson, A. H. F., Emeis, K. C., Richter, K. C. & Camerlenghi, A.), pp. 723–82. College Station, Texas.CrossRefGoogle Scholar
Robertson, A. H. F., Kidd, R. B., Ivanov, M. K., Limonov, A. F., Woodside, J. M., Galindozaldivar, J. & Nieto, L. 1995. Eratosthenes Seamount – Collisional processes in the Easternmost Mediterranean in relationship to the Plio-Quaternary uplift of Southern Cyprus. Terra Nova 7 (2), 254–64.CrossRefGoogle Scholar
Rojay, B., Heimann, A. & Toprak, V. 2001. Neotectonic and volcanic characteristics of the Karasu fault zone Anatolia, Turkey: The transition zone between the Dead Sea transform and the East Anatolian fault zone. Geodinamica Acta 14, 197212.CrossRefGoogle Scholar
Şengör, A. M. C., Görür, N. & Şaroğlu, F. 1985. Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In Strike-Slip Deformation, Basin Formation, and Sedimentation (eds Biddle, K. T. & Christie-Blick, N.), pp. 227–64. Society of Economic Palaeontology and Mineralogy, Special Publication no. 37.CrossRefGoogle Scholar
Shan, Y., Li, Z. & Lin, G. 2004. A stress inversion procedure for automatic recognition of polyphase fault/slip data sets. Journal of Structural Geology 26, 919–25.CrossRefGoogle Scholar
Tatar, O., Piper, J. D. A., Gürsoy, H., Heimann, A. & Koçbulut, F. 2004. Neotectonic deformation in the transition zone between the Dead Sea Transform and the East Anatolian Fault Zone, Southern Turkey: a palaeomagnetic study of the Karasu Rift volcanism. Tectonophysics 385, 1743.CrossRefGoogle Scholar
ten Veen, J. H. & Kleinspehn, K. L. 2002. Geodynamics along an increasingly curved convergent plate margin: Late Miocene–Pleistocene Rhodes, Greece. Tectonics 21, 1017–38.CrossRefGoogle Scholar
Theunissen, K., Klerk, J., Melnikov, A. & Mruma, A. 1996. Mechanisms of inheritance of rift faulting in the western branch of the East African Rift, Tanzania. Tectonics 15 (4), 776–90.CrossRefGoogle Scholar
Tinkler, C., Wagner, J. J., Delaloye, M. & Selçuk, H. 1981. Tectonic history of the Hatay Ophiolite South Turkey and their relationship with the Dead Sea rift. Tectonophysics 72, 2341.CrossRefGoogle Scholar
Tron, V. & Brun, J.-P. 1991. Experiments on oblique rifting in brittle-ductile systems. Tectonophysics 188, 7184.CrossRefGoogle Scholar
Umhoefer, P. J. & Stone, K. A. 1996. Description and kinematics of the SE Loreto basin fault array, Baja California Sur, Mexico: a positive field test of oblique-rift models. Journal of Structural Geology 18, 595614.CrossRefGoogle Scholar
Unruh, J., Humphrey, J. & Barron, A. 2003. Transtensional model for the Sierra Nevada frontal fault system, eastern California. Geology 31 (4), 327–30.2.0.CO;2>CrossRefGoogle Scholar
Vidal, N., Avarez-Marron, J. & Klaeschen, D. 2000. The structure of the Africa–Anatolia plate boundary in the eastern Mediterranean. Tectonics 19, 723–39.CrossRefGoogle Scholar
Waldron, J. F. 2005. Extensional fault arrays in strike-slip and transtension. Journal of Structural Geology 27, 2334.CrossRefGoogle Scholar
Westaway, R. 1994. Present day kinematics of the Middle East and Eastern Mediterranean. Journal of Geophysical Research 99, 12071–90.CrossRefGoogle Scholar
Westaway, R. & Arger, J. 1998. The Gölbaşı basin, southeastern Turkey: A complex discontinuity in a major strike-slip zone. Journal of the Geological Society, London 153, 729–43.CrossRefGoogle Scholar
Withjack, M. O. & Jamieson, W. R. 1986. Deformation produced by oblique rifting. Tectonophysics 126, 99124.CrossRefGoogle Scholar
Yürür, T. & Chorowicz, J. 1998. Recent volcanism, tectonics and plate kinematics near the junction of the African, Arabian and Anatolian plates in the Eastern Mediterranean. Journal of Volcanology and Geothermal Research 85, 115.CrossRefGoogle Scholar
Supplementary material: File

Boulton supplementary material

Supplementary appendix

Download Boulton supplementary material(File)
File 510.5 KB