Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T16:39:54.820Z Has data issue: false hasContentIssue false

New early Cambrian sclerites of Lapworthella schodakensis from NE Greenland: advancements in knowledge of lapworthellid taxonomy, sclerite growth and scleritome organization

Published online by Cambridge University Press:  02 August 2016

L. DEVAERE*
Affiliation:
Leibniz-Institut für Evolutions und Biodiversitätsforschung, Museum für Naturkunde, 10115 Berlin, Germany
C. B. SKOVSTED
Affiliation:
Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
*
Author for correspondence: lea.devaere@mfn-berlin.de

Abstract

The Cambrian Stage 4 upper Bastion Formation of Albert Heim Bjerge and CH Ostenfeld Nunatak, NE Greenland, yielded 34 excellently preserved sclerites of Lapworthella schodackensis among other small shelly fossils. Lapworthellids have been interpreted as members of the camenellans, a basal tommotiid group. Little is known about this group although the morphological and ultrastructural features of their sclerites allow a potential reconstruction of a lophophorate body plan. The exquisite material from Greenland provides significant new data for the revision of the species taxonomy, but also for the comprehension of the scleritome structure of lapworthellids and the mode of formation of their sclerites. Two morphotypes of L. schodackensis sclerites are identified: one with a simple apex, occurring in sinistral and dextral forms; and one bilaterally symmetrical sclerite with two apices. All bear a similar ornamentation constructed of repeated growth sets consisting of a reticulate inter-rib groove with tubercles, a densely denticulate rib and a striated sub-rib area. The new data on the ornamentation and observations of the laminar shell microstructure of L. schodackensis enable us to improve the reconstruction of growth in lapworthellids. Finally, the morphological features of the two types of sclerites provide new information for the reconstruction of the bilaterally symmetrical multi-component lapworthellid scleritome with evidence of the fusion of adjacent sclerites during early ontogeny.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balthasar, U., Skovsted, C. B., Holmer, L. E. & Brock, G. A. 2009. Homologous skeletal secretion in tommotiids and brachiopods. Geology 37, 1143–6.Google Scholar
Bengtson, S. 1970. The Lower Cambrian fossil Tommotia. Lethaia 3, 363–92.Google Scholar
Bengtson, S. 1977. Aspects of problematic fossils in the early Palaeozoic. Acta Universitatis Upsaliensis, Abstracts of Uppsala Dissertations from the Faculty of Science 415, 171.Google Scholar
Bengtson, S. 1980. Redescription of the Lower Cambrian Lapworthella cornu . Geologiska Föreningeni Stockholm Forhandlingar 102, 53–5.Google Scholar
Bengtson, S. 1983. The early history of the Conodonta. Fossils and Strata 15, 519.Google Scholar
Bengtson, S. 2004. Early skeletal fossils. In Neoproterozoic–Cambrian Biological Revolutions (eds Lipps, J. H. & Waggoner, B. M.), p. 6777. The Paleontological Society, Papers no. 10.Google Scholar
Bengtson, S., Conway Morris, S., Cooper, B. J., Jell, P. A. & Runnegar, B. 1990. Early Cambrian fossils from South Australia. Memoirs of the Association of Australasian Palaeontologists 9, 1364.Google Scholar
Bischoff, G. C. O. 1976. Dailyatia, a new genus of the Tommotiidae from Cambrian strata of SE Australia (Crustacea, Cirripedia). Senkenbergiana Lethaea 57, 133.Google Scholar
Caron, J-B., Smith, M. R. & Harvey, T. H. P. 2013. Beyond the Burgess Shale: Cambrian microfossils track the rise and fall of hallucigeniid lobopodians. Proceedings of the Royal Society B 280, doi: 10.1098/rspb.2013.1613.Google Scholar
Cobbold, E. S. 1921. The Cambrian horizons of Comley (Shropshire) and their Brachiopoda. Pteropoda. Gasteropoda, etc. Quarterly Journal of the Geological Society 76, 325–86.CrossRefGoogle Scholar
Conway Morris, S. & Chen, M. 1990. Tommotiids from the Lower Cambrian of south China. Journal of Paleontology 64 (2), 169–84.Google Scholar
Conway-Morris, S. & Fritz, W. H. 1984. Lapworthella filigrana n. sp. (incertae sedis) from the Lower Cambrian of the Cassiar Mountains, northern British Columbia, Canada, with comments on possible levels of competition in the early Cambrian. Paläontologische Zeitschrift 58 (3/4), 197209.CrossRefGoogle Scholar
Cowie, J. W. & Adams, P. J. 1957. The geology of the Cambro-Ordovician rocks of central East Greenland. Pt I, Stratigraphy and structure. Meddelelser om Grønland 153 (1), 193 p.Google Scholar
Demidenko, Y. E. 2004. New data on the sclerite morphology of the tommotiid species Lapworthella fasciculata . Paleontological Journal 38, 134–40.Google Scholar
Devaere, L., Clausen, S., Monceret, E., Vizcaïno, D., Vachard, D. & Genge, M-C. 2014. The tommotiid Kelanella and associated fauna from the early Cambrian of southern Montagne Noire (France): implication for camenellan phylogeny. Palaeontology 57, 9791002.Google Scholar
Devaere, L., Holmer, L. E., Clausen, S. & Vachard, D. 2015. Oldest mickwitziid brachiopod from the Terreneuvian of Southern France. Acta Palaeontologica Polonica 60 (3), 755–68.Google Scholar
Duan, C. 1984. Small Shelly Fossils from the Lower Cambrian Xihaoping Formation the Shennongjia district, Hubei province - hyoliths and fossil skeletons of unknown affinities. Bulletin of the Tianjin Institute of Geology and Mineral Resources 7, 141–88.Google Scholar
Evans, K. R. & Rowell, A. J. 1990. Small shelly fossils from Antarctica: an early Cambrian faunal connection with Australia. Journal of Paleontology 64, 692700.Google Scholar
Fisher, D. W. 1962. Small conoidal shells of uncertain affinities. In Treatise on Invertebrate Paleontology – Miscellanea (ed. Moore, R. C.), p. W98W143. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Hinz, I. 1987. The Lower Cambrian microfauna of Comley and Rushton, Shropshire/England. Palaeontographica Abteilung A 198 (1/3), 41100.Google Scholar
Holmer, L. E., Skovsted, C. B., Brock, G. A., Valentine, J. L. & Paterson, J. R. 2008. The Early Cambrian tommotiid Micrina, a sessile bivalved stem group brachiopod. Biology Letters 4, 724–8.Google Scholar
Kouchinsky, A., Bengtson, S. & Murdock, D. J. 2010. A new tannuolinid problematic from the lower Cambrian of the Sukharikha River in northern Siberia. Acta Palaeontologica Polonica 55, 321–31.CrossRefGoogle Scholar
Kouchinsky, A. V., Bengtson, S., Runnegar, B., Skovsted, C., Steiner, M. & Vendrasco, M. 2012. Chronology of early Cambrian biomineralisation. Geological Magazine 149 (2), 221–51.Google Scholar
Kouchinsky, A., Holmer, L. E., Steiner, M. & Ushatinskaya, G. T. 2015. The new stem-group brachiopod Oymurania from the lower Cambrian of Siberia. Acta Palaeontologica Polonica 60 (4), 963–80.Google Scholar
Landing, E. 1984. Skeleton of lapworthellids and the suprageneric classification of tommotiids (Early and Middle Cambrian phosphatic problematica). Journal of Paleontology 58 (6), 1380–98.Google Scholar
Landing, E. & Bartowski, K. E. 1996. Oldest shelly fossils from the Taconic allochthon and late early Cambrian sea-levels in eastern Laurentia. Journal of Paleontology 70 (5), 741–61.Google Scholar
Landing, E., Johnson, S. C. & Geyer, G. 2008. Faunas and Cambrian volcanism on the Avalonian marginal platform, southern New Brunswick. Journal of Paleontology 82, 884905.CrossRefGoogle Scholar
Larsson, C. M., Skovsted, C. B., Brock, G. A., Balthasar, U., Topper, T. P. & Holmer, L. E. 2014. Paterimitra pyramidalis from South Australia: scleritome, shell structure and evolution of a lower Cambrian stem group brachiopod. Palaeontology 57, 417–46.CrossRefGoogle Scholar
Laurie, J. R. 1986. Phosphatic fauna of the Early Cambrian Todd River Dolomite, Amadeus Basin, central Australia. Alcheringa 10, 431–54.CrossRefGoogle Scholar
Li, G. & Xiao, S. 2004. Tannuolina and Micrina (Tannuolinidae) from the Lower Cambrian of eastern Yunnan, South China, and their scleritome reconstruction. Journal of Paleontology 78, 900–13.Google Scholar
Liu, J., Steiner, M., Dunlop, J. A., Keupp, H., Shu, D., Ou, Q., Han, J., Zhang, Z. & Zhang, X. 2011. An armoured Cambrian lobopodian from China with arthropod-like appendages. Nature 470 (7335), 526–30.Google Scholar
Lochman, C. 1956. Stratigraphy, paleontology, and paleogeography of the Elliptocephala asaphoides strata in Cambridge and Hoosick Quadrangles, New York. Bulletin of the Geological Society of America 67, 1331–96.CrossRefGoogle Scholar
Luo, H., Jiang, Z., Wu, X., Song, X. & Ouyang, L. 1982. The Sinian-Cambrian Boundary in Eastern Yunnan, China. Yunnan Institute of Geological Sciences, 265 pp.Google Scholar
Malinky, J. M. & Skovsted, C. B. 2004. Hyoliths and small shelly fossils from the Lower Cambrian of North-East Greenland. Acta Palaeontologia Polonica 49, 551–78.Google Scholar
Maloof, A. C., Porter, S. M., Moore, J. L., Dudás, F. Ö., Bowring, S. A., Higgins, J. A., Fike, D. A. & Eddy, M. P. 2010. The earliest Cambrian record of animals and ocean geochemical change. Geological Society of America Bulletin 122, 1731–74.Google Scholar
Matthews, S. C. 1973. Lapworthellids from the Lower Cambrian Strenuella Limestone at Comley, Shropshire. Palaeontology 16 (1), 139–48.Google Scholar
Matthews, S. C. & Missarzhevsky, V. V. 1975. Small shelly fossils of late Precambrian and early Cambrian age: a review of recent work. Journal of the Geological Society of London 131, 289303.Google Scholar
McMenamin, M. A. S. 1992. Two new species of the Cambrian genus Mickwitzia . Journal of Paleontology 66, 173–82.Google Scholar
Meshkova, N. P. 1969. On the paleontological characterization of the Lower Cambrian deposits of the Siberian platform. Biostratigraphy and Paleontology of the Lower Cambrian of Siberia and the Russian Far East (ed. Zhuravleva, I. T.), pp. 158174. Nauka, Moscow.Google Scholar
Missarzhevsky, V. V. 1970. Novoye rodovoye nazvaniye Tommotia Missarzhevsky, nom. nov. Paleontologicheskiy Zhurnal 2, 100.Google Scholar
Murdock, D. J., Bengtson, S., Marone, F., Greenwood, J. M. & Donoghue, P. C. 2014. Evaluating scenarios for the evolutionary assembly of the brachiopod body plan. Evolution & Development 16, 1324.Google Scholar
Murdock, D. J. E., Donoghue, P. C. J., Bengtson, S. & Marone, F. 2012. Ontogeny and microstructure of the enigmatic Cambrian tommotiid Sunnaginia Missarzhevsky 1969. Palaeontology 55, 661–76.Google Scholar
Poulsen, C. 1942. Nogle hidtil ukendte Fossiler fra Bornholms Exsulanskalk. Meddelelser fra Dansk Geologisk Forening 10, 212–35.Google Scholar
Qian, Y. & Bengtson, S. 1989. Palaeontology and biostratigraphy of the early Cambrian Meishucunian Stage in Yunnan province, south China. Fossils and Strata 24, 1156.Google Scholar
Qian, Y. & Yin, G. 1984. Small Shelly Fossils from the lowest Cambrian in Guizhou. Professional Papers of Stratigraphy and Palaeontology 13, 91124.Google Scholar
Qian, Y. & Zhang, S. 1983. Small Shelly Fossils from the Xihaoping Member of the Congying Formation in the Fangxian county of Hubei province and their stratigraphical significance. Acta Palaeontologica Sinica 2 (1), 8394.Google Scholar
Rozanov, A. Y. & Missarzhevsky, V. V. 1966. Biostratigraphy and fauna of the lower Horizons of the Cambrian. Proceedings of the Geological Institute of the Academy of Sciences of the USSR, Nauka, Moscow 148, 1118.Google Scholar
Rozanov, A. Y., Missarzhevsky, V. V., Volkova, N. A., Voronova, L. G., Krylov, I. N., Keller, B. M., Korolyuk, I. K., Lendzion, K., Mikhnyar, R., Pykhova, N. G. & Sidorov, A. D. 1969. Tommotskiu jarus i problema nizhney granisty Kembriya. (The Tommotian Stage and the lower boundary problem.) Trudy Geoligske Institut Leningrad 206, 1379.Google Scholar
Rozanov, A. Y., Parkhaev, P. Y., Demidenko, Y. E., Karlova, G. A., Korovnikov, I. V., Shabanov, Y. Y., Ivancov, A. Y., Luchinina, V. A., Malakhovskaya, A. E., Melnikova, L. M., Naimark, E. B., Ponomarenko, A. G., Skorlotova, N. A., Sundukov, V. M., Tokarev, D. A., Ushatinskaya, G. T. & Kipriyanova, L. D. 2010. Fossils from the Lower Cambrian Stage Stratotype. PIN RAN, Moscow, 225 pp.Google Scholar
Skovsted, C. B. 2004. Mollusc fauna of the Early Cambrian Bastion Formation of North-East Greenland. Bulletin of the Geological Society of Denmark 51, 1137.Google Scholar
Skovsted, C. B. 2006. Small shelly fauna from the upper Lower Cambrian Bastion and Ella Island Formations of North-East Greenland. Journal of Paleontology 80, 1087–112.CrossRefGoogle Scholar
Skovsted, C. B., Balthasar, U., Brock, G. A. & Paterson, J. R. 2009. The tommotiid Camenella reticulosa from the early Cambrian of South Australia: morphology, scleritome reconstruction and phylogeny. Acta Palaeontologica Polonica 54, 525–40.Google Scholar
Skovsted, C. B., Betts, M. J., Topper, T. P. & Brock, G. A. 2015. The early Cambrian tommotiid genus Dailyatia from South Australia. Memoirs of the Association of Australasian Palaeontologists 48, 1117.Google Scholar
Skovsted, C. B., Brock, G. A., Topper, T. P., Paterson, J. R. & Holmer, L. E. 2011. Scleritome construction, biofacies, biostratigraphy and systematics of the tommotiid Eccentrotheca helenia sp. nov. from the early Cambrian of South Australia. Palaeontology 54, 253–86.Google Scholar
Skovsted, C. B., Clausen, S., Álvaro, J. J. & Ponlevé, D. 2014. Tommotiids from the early Cambrian (Series 2, Stage 3) of Morocco and the evolution of the tannuolinid scleritome and setigerous shell structures in stem group brachiopods. Palaeontology 57, 171–92.Google Scholar
Skovsted, C. B. & Holmer, L. E. 2003. The Early Cambrian stem group brachiopod Mickwitzia from Northeast Greenland. Acta Palaeontologica Polonica 48, 1130.Google Scholar
Skovsted, C. B. & Holmer, L. E. 2005. Early Cambrian brachiopods from North-East Greenland. Palaeontology 48, 325–45.Google Scholar
Skovsted, C. B. & Peel, J. S. 2007. Small shelly fossils from the argillaceous facies of the Lower Cambrian Forteau Formation of western Newfoundland. Acta Palaeontologica Polonica 52, 729–48.Google Scholar
Stein, M. 2008. Evolution and taxonomy of Cambrian arthropods from Greenland and Sweden. Faculty of Science and Technology, University of Uppsala, Digital Comprehensive Summaries of Uppsala Dissertation no. 558, 35 pp.Google Scholar
Stouge, S., Boyce, D. W., Christiansen, J., Harper, D. A. T. & Knight, I. 2001. Vendian–Lower Ordovician stratigraphy of Ella Ø, North-East Greenland: New investigations. Geology of Greenland Survey Bulletin 189, 107–14.Google Scholar
Szaniawski, H. 1982. Chaetognath grasping spines recognized among Cambrian protoconodonts. Journal of Paleontology 56, 806–10.Google Scholar
Szaniawski, H. 2002. New evidence for the protoconodont origin of chaetognaths. Acta Palaeontologia Polonica 47, 405–19.Google Scholar
Vinther, J. 2009. The canal system in sclerites of Lower Cambrian Sinosachites (Halkieriidae: Sachitida): significance for the molluscan affinities of the sachitids. Palaeontology 52, 689712.Google Scholar
Williams, A. & Holmer, L. E. 2002. Shell structure and inferred growth, functions and affinities of the sclerites of the problematic Micrina. Palaeontology 45, 845–73.Google Scholar
Wiman, C. 1903. Studien uiber das Nordbaltische Silurgebiet. I. Olenellussandstein, Obolussandstein und Ceratopygeschiefer. Bulletin of the Geological Institute of the University of Uppsala 6, 1276.Google Scholar
Wrona, R. 2004. Cambrian microfossils from glacial erratics of King George Island, Antarctica. Acta Palaeontologica Polonica 49 (1), 1356.Google Scholar
Yue, Z. 1987. The discovery of Tannuolina and Lapworthella [sic] from Lower Cambrian in Meishucun (Yunnan) and Maidiping (Sichuan) sections. Professional Papers on Stratigraphy and Palaeontology 16, 73180.Google Scholar