Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T01:11:36.767Z Has data issue: false hasContentIssue false

A new genus of brissid echinoid from the Miocene of Australia

Published online by Cambridge University Press:  01 May 2009

K. J. McNamara
Affiliation:
Department of Palaeontology, Western Australian Museum, Francis Street, Perth, Western Australia 6000, Australia
C. Ah Yee
Affiliation:
20 Bayley Street, Hamilton, Victoria 3300, Australia

Abstract

The brissid echinoid Amoraster (gen. nov.) is described from Miocene strata in southern Australia on the basis of two species: A. paucituberculata sp. nov., which ranges from the Batesfordian (latest Early Miocene) Bochara Limestone to the Bairnsdalian–Mitchellian (Middle–Late Miocene) Port Campbell Limestone in Victoria; and A. tuberculata sp. nov. from the Longfordian (Early Miocene) Mannum Formation in South Australia. Morphological changes which occurred with the evolution of A. paucituberculata from A. tuberculata are interpreted as being adaptations to the occupation of a finer grained sediment by the descendant species.

Type
Articles
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abele, C., Gloe, C. S., Hocking, J. B., Holdgate, G., Kenley, P. R., Lawrence, C. R., Ripper, D. & Threlfall, W. F. 1976. Tertiary. In Geology of Victoria (ed. Douglas, J. G. Waters, J. A.), pp. 177274. Geological Society of Australia Special Publication No. 5.Google Scholar
Baker, G. 1950. Geology and physiology of the Moonlight Head district. Proceedings of the Royal Society of Victoria 60, 1744.Google Scholar
Bock, P. E. & Glenie, R. C. 1965. Late Cretaceous and Tertiary depositional cycles in southwestern Victoria. Proceedings of the Royal Society of Victoria 79, 153–63.Google Scholar
Claus, C. 1876. Grudzuge der Zoologie, Vol. 1 (3rd ed.). Marburg and Leipzig.Google Scholar
Ferber, I. & Lawrence, J. M. 1976. Distribution, substratum preference and burrowing behaviour of Lovenia elongata (Gray) (Echinoidea: Spatangoida) in the Gulf of Elat ('Aqaba), Red Sea. Journal of Experimental Marine Biology and Ecology 22, 207–25.CrossRefGoogle Scholar
Gray, J. E. 1855. Catalogue of the Recent Echinida, or sea eggs, in the collection of the British Museum. Part 1 – Echinida Irregularia. London: British Museum (Natural History).Google Scholar
Kier, P. M. 1984. Fossil spatangoid echinoids of Cuba. Smithsonian Contributions to Paleobiology 55, 1336.Google Scholar
Kruse, P. D. & Philip, G. M. 1985. Tertiary species of the echinoid genus Eupatagus from southern Australia. Department of Mines and Energy South Australia, Special Publication 5, 167–85.Google Scholar
Lindsay, J. M. 1985. Aspects of South Australian Tertiary foraminiferal biostratigraphy, with emphasis on studies of Massilina and Subbotina. Department of Mines and Energy South Australia, Special Publication 5, 187231.Google Scholar
Ludbrook, N. H. 1973. Distribution and stratigraphic utility of Cenozoic molluscan faunas in southern Australia. Science Reports of the Tohoku University, Sendai, Japan, Second series (Geology), Special Volume, No. 6 (Hatai Memorial Volume), 241–61.Google Scholar
McNamara, K. J. 1982. Taxonomy and evolution of living species of Breynia (Echinoidea: Spatangoida) from Australia. Records of the Western Australian Museum 10, 167–97.Google Scholar
McNamara, K. J. 1987. Taxonomy, evolution, and functional morphology of southern Australian Tertiary hemiasterid echinoids. Palaeontology 30, 319–52.Google Scholar
McNamara, K. J. 1988. Heterochrony and the evolution of echinoids. In Echinoderm Phylogeny and Evolutionary Biology (ed. Paul, C. R. C., Smith, A. B.), pp. 149–63. Oxford: Oxford University Press.Google Scholar
McNamara, K. J. (in prep.). The role of gastropod predation in directing speciation in spatangoid echinoids.Google Scholar
McNamara, K. J. & Philip, G. M. 1980. Australian Tertiary schizasterid echinoids. Alcheringa 4, 4765.CrossRefGoogle Scholar
McNamara, K. J. & Philip, G. M. 1984. A revision of the spatangoid echinoid Pericosmus from the Tertiary of Australia. Records of the Western Australian Museum 11, 319–56.Google Scholar
McNamara, K. J., Philip, G. M. & Kruse, P. D. 1986. Tertiary brissid echinoids of southern Australia. Alcheringa 10, 5584.CrossRefGoogle Scholar
Mortensen, T. 1951. A monograph of the Echinoidea 5(2), Spatangoida II. Copenhagen: Reitzel.Google Scholar
Singleton, O. P., McDougall, I. & Mallett, C. W. 1976. The Pliocene–Pleistocene boundary in southeastern Australia. Journal of the Geological Society of Australia 23, 299311.CrossRefGoogle Scholar
Smith, A. B. & Paul, C. R. C. 1985. Variation in the irregular echinoid Discoides during the Early Cenomanian. In Evolutionary Case Histories from the Fossil Record (ed. Cope, J. C. W., Skelton, P. W.), pp. 2937. Special Papers in Palaeontology no. 33.Google Scholar
Smith, A. B. & Zaghbib-Turki, D. 1985. Les Archiaciidae (Cassiduloida Echinoidea) du Crétacé Supérieur de Tunisie et leur mode de vie. Annales de Paléontologie 71, 133.Google Scholar
Spencer-Jones, D. 1971. Marginal Tertiary deposits of the Tyrendarra Embayment – Grassadle and Hamilton district. In The Otway Basin of southeastern Australia (ed. Wopfner, H., Douglas, J. G.), pp. 241–9. Special Bulletin of the Geological Surveys of South Australia and Victoria.Google Scholar
Tenison Woods, J. E. 1867. The Tertiary rocks of South Australia Pt. IV. Fossil Echinidea. Papers of the Adelaide Philosophical Society 18651866, 1–2.Google Scholar