Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T00:39:49.848Z Has data issue: false hasContentIssue false

New insights into the early evolution of horizontal spiral trace fossils and the age of the Brioverian series (Ediacaran–Cambrian) in Brittany, NW France

Published online by Cambridge University Press:  28 January 2021

Romain Gougeon*
Affiliation:
Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada Université de Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000Rennes, France
Didier Néraudeau
Affiliation:
Université de Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000Rennes, France
Alfredo Loi
Affiliation:
Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Cittadella Universitaria, 09042Monserrato, Italy
Marc Poujol
Affiliation:
Université de Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000Rennes, France
*
Author for correspondence: Romain Gougeon, Email: gougeon.romain@gmail.com

Abstract

In northwestern France, the Brioverian series is a thick siliciclastic succession deposited during the Cadomian cycle (c. 750–540 Ma). In the uppermost Brioverian beds, previous studies unravelled an assemblage dominated by simple horizontal trace fossils associated with microbially stabilized surfaces. Here, we report Spirodesmos trace fossils – one-way, irregular and regular horizontal spirals – from Crozon (Finistère, Brittany), Montfort-sur-Meu and St-Gonlay (Ille-et-Vilaine, Brittany). After reviewing the literature on horizontal spiral trace fossils, an Ediacaran–Fortunian Spirodesmos pool is identified from marginal-marine to shelf settings, while an Ordovician–Recent trend formed in the deep-marine realm. These results suggest that an onshore–offshore migration in Spirodesmos took place during Ediacaran–Fortunian to Ordovician time, similar to what happened in graphoglyptids. In addition, the age of the uppermost Brioverian beds (Ediacaran or early Cambrian) is still a pending question. Here, we report two new U–Pb detrital zircon datings from sandstone samples in St-Gonlay, giving maximum deposition ages of 551 ± 7 Ma and 540 ± 5 Ma. Although these results do not discard an Ediacaran age for the uppermost Brioverian beds, a Fortunian age is envisioned because the new dating corroborates previous dating from Brittany, Mayenne and Normandy. However, the intervals of error of the radiometric dating, and the dominance of non-penetrative trace fossils associated with matgrounds (an ecology more typical of the Ediacaran Period), do not allow definitive conclusions on the age of the uppermost Brioverian beds.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aceñolaza, GF (2005) Spirodesmos milanai n. isp.: a shallow-water spiral trace fossil from the Cambrian of the eastern Cordillera, northwest Argentina. Ichnos 12, 5963.CrossRefGoogle Scholar
Andrée, K (1920) Über einige fossile Problematika. I. Ein Problematikum aus dem Paläozoikum von Battenberg an der Eder und des dasselbe beherbergende Gestein. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie 1, 5588.Google Scholar
Auvray, B, Mace, J, Vidal, P and Van der Voo, R (1980) Rb-Sr dating of the Plouézec volcanics, N Brittany: implications for the age of red beds (‘Séries rouges’) in the northern Armorican Massif. Journal of the Geological Society 137, 207–10.CrossRefGoogle Scholar
Ballèvre, M, Bosse, V, Dabard, M-P, Ducassou, C, Fourcade, S, Paquette, J-L, Peucat, J-J and Pitra, P (2013) Histoire géologique du Massif Armoricain: actualité de la recherche. Bulletin de la Société Géologique et Minéralogique de Bretagne 10–11, 596.Google Scholar
Ballouard, C, Poujol, M and Zeh, A (2018) Multiple crust reworking in the French Armorican Variscan belt: implication for the genesis of uranium-fertile leucogranites. International Journal of Earth Sciences 107, 2317–36.CrossRefGoogle Scholar
Beer, EJ (1919) Note on a spiral impression on Lower Vindhyan Limestone. Records of the Geological Survey of India 50, 139.Google Scholar
Billings, E (1872) On some fossils from the primordial rocks of Newfoundland. Canadian Naturalist and Quarterly Journal of Science 6, 465–79.Google Scholar
Bonjour, JL and Odin, GS (1989) Recherche sur les volcanoclastites des Séries Rouges Initiales en presqu’île de Crozon: premier âge radiométrique de l’Arénig. Géologie de la France 4, 37.Google Scholar
Bonjour, JL, Peucat, JJ, Chauvel, JJ, Paris, F and Cornichet, J (1988) U-Pb zircon dating of the early Paleozoic (Arenigian) transgression in Western Brittany (France): a new constraint for the lower Paleozoic time-scale. Chemical Geology (Isotope Geoscience section) 72, 329–36.CrossRefGoogle Scholar
Bottjer, DJ, Hagadorn, JW and Dornbos, SQ (2000) The Cambrian substrate revolution. GSA Today 10, 17.Google Scholar
Bowring, SA, Grotzinger, JP, Condon, DJ, Ramezani, J, Newall, MJ and Allen, PA (2007) Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. American Journal of Science 307, 1097–145.CrossRefGoogle Scholar
Boyle, RA, Dahl, TW, Bjerrum, CJ and Canfield, DE (2018) Bioturbation and directionality in Earth’s carbon isotope record across the Neoproterozoic–Cambrian transition. Geobiology 16, 252–78.CrossRefGoogle ScholarPubMed
Brasier, M, Cowie, J and Taylor, M (1994) Decision on the Precambrian-Cambrian boundary stratotype. Episodes 17, 38.CrossRefGoogle Scholar
Buatois, LA and Mángano, MG (2016) Ediacaran ecosystems and the dawn of animals. In The Trace-Fossil Record of Major Evolutionary Events, Volume 1: Precambrian and Paleozoic (eds Mángano, MG and Buatois, LA), pp. 2772. Dordrecht: Springer.CrossRefGoogle Scholar
Buatois, LA, Netto, RG, Mángano, MG and Carmona, NB (2013) Global deglaciation and the re-appearance of microbial matground-dominated ecosystems in the late Paleozoic of Gondwana. Geobiology 11, 307–17.CrossRefGoogle ScholarPubMed
Buatois, LA, Wisshak, M, Wilson, MA and Mángano, MG (2017) Categories of architectural designs in trace fossils: a measure of ichnodisparity. Earth-Science Reviews 164, 102–81.CrossRefGoogle Scholar
Budd, GE and Jensen, S (2000) A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews 75, 253–95.CrossRefGoogle ScholarPubMed
Canfield, DE and Farquhar, J (2009) Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proceedings of the National Academy of Sciences 106, 8123–7.CrossRefGoogle ScholarPubMed
Carbone, C and Narbonne, GM (2014) When life got smart: the evolution of behavioral complexity through the Ediacaran and Early Cambrian of NW Canada. Journal of Paleontology 88, 309–30.CrossRefGoogle Scholar
Cayeux, L (1894) Sur la présence de restes de Foraminifères dans les terrains précambriens de Bretagne. Annales de la Société Géologique du Nord 22, 116–9.Google Scholar
Chantraine, J, Chauvel, J-J, Dupret, L, Gatinot, F, Icart, J-C, Le Corre, C, Rabu, D, Sauvan, P and Villey, M (1982) Inventaire lithologique et structural du Briovérien (Protérozoïque supérieur) de la Bretagne centrale et du Bocage normand. Bulletin du BRGM 1, 317.Google Scholar
Chantraine, J, Egal, E, Thiéblemont, D, Le Goff, E, Guerrot, C, Ballèvre, M and Guennoc, P (2001) The Cadomian active margin (North Armorican Massif, France): a segment of the North Atlantic Panafrican belt. Tectonophysics 331, 118.CrossRefGoogle Scholar
Chauvel, JJ and Mansuy, C (1981) Micropaléontologie du Protérozoïque du Massif Armoricain (France). Precambrian Research 15, 2542.CrossRefGoogle Scholar
Chauvel, JJ and Schopf, JW (1978) Late Precambrian microfossils from Brioverian cherts and limestones of Brittany and Normandy, France. Nature 275, 640–2.CrossRefGoogle Scholar
Childress, JJ and Thuesen, EV (1992) Metabolic potential of deep-sea animals: regional and global scales. In Deep-Sea Food Chains and the Global Carbon Cycle (eds Rowe, GT and Pariente, V), pp. 217–36. Dordrecht: Springer.CrossRefGoogle Scholar
Cloud, PE (1968) Pre-Metazoan evolution and the origins of the Metazoa. In Evolution and environment (ed. Drake, ET), pp. 172. New Haven: Yale University Press.Google Scholar
Cogné, J (1959) Données nouvelles sur l’Antécambrien dans l’Ouest de la France: Pentévrien et Briovérien en baie de Saint-Brieuc (Côtes-du-Nord). Bulletin de la Société Géologique de France 7, 112–8.CrossRefGoogle Scholar
Crimes, TP (1987) Trace fossils and correlation of late Precambrian and early Cambrian strata. Geological Magazine 124, 97119.CrossRefGoogle Scholar
Crimes, TP (1992a) Changes in the trace fossil biota across the Proterozoic-Phanerozoic boundary. Journal of the Geological Society, London 149, 637–46.CrossRefGoogle Scholar
Crimes, TP (1992b) The record of trace fossils across the Proterozoic-Cambrian boundary. In Origin and Early Evolution of the Metazoa (eds Lipps, JH and Signor, PW), pp. 177–99. New York: Plenum Press.CrossRefGoogle Scholar
Crimes, TP (1994) The period of early evolutionary failure and the dawn of evolutionary success: the record of biotic changes across the Precambrian-Cambrian boundary. In The Palaeobiology of Trace Fossils (ed. Donovan, SK), pp. 105–33. Chichester: John Wiley & Sons.Google Scholar
Crimes, TP and Anderson, MM (1985) Trace fossils from Late Precambrian-Early Cambrian strata of southeastern Newfoundland (Canada): temporal and environmental implications. Journal of Paleontology 59, 310–43.Google Scholar
Crimes, TP and Crossley, JD (1991) A diverse ichnofauna from Silurian flysch of the Aberystwyth Grits Formation, Wales. Geological Journal 26, 2764.CrossRefGoogle Scholar
Crimes, TP and Fedonkin, MA (1994) Evolution and dispersal of deepsea traces. Palaios 9, 7483.CrossRefGoogle Scholar
Crimes, TP, Garcia Hidalgo, JG and Poire, DG (1992) Trace fossils from Arenig flysch sediments of Eire and their bearing on the early colonisation of the deep seas. Ichnos 2, 6177.CrossRefGoogle Scholar
Crimes, TP, Marcos, A and Perez-Estaun, A (1974) Upper Ordovician turbidites in western Asturias: a facies analysis with particular reference to vertical and lateral variations. Palaeogeography, Palaeoclimatology, Palaeoecology 15, 169–84.CrossRefGoogle Scholar
Crimes, TP and McCall, GJH (1995) A diverse ichnofauna from Eocene–Miocene rocks of the Makran Range (SE Iran). Ichnos 3, 231–58.CrossRefGoogle Scholar
Cunningham, JA, Liu, AG, Bengtson, S and Donoghue, PC (2017) The origin of animals: can molecular clocks and the fossil record be reconciled? BioEssays 39, 112.CrossRefGoogle ScholarPubMed
D’Lemos, RS, Strachan, RA and Topley, CG (1990) The Cadomian orogeny in the North Armorican Massif: a brief review. In The Cadomian Orogeny (eds D’Lemos, RS, Strachan, R and Topley, CG), pp. 312. Geological Society of London, Special Publication no. 51.Google Scholar
Dabard, MP (1990) Lower Brioverian formations (Upper Proterozoic) of the Armorican Massif (France): geodynamic evolution of source areas revealed by sandstone petrography and geochemistry. Sedimentary Geology 69, 4558.CrossRefGoogle Scholar
Dabard, MP (2000) Petrogenesis of graphitic cherts in the Armorican segment of the Cadomian orogenic belt (NW France). Sedimentology 47, 787800.CrossRefGoogle Scholar
Dabard, MP and Loi, A (1998) Environnement de dépôt des formations à phtanites interstratifiés du Protérozoïque supérieur armoricain (France): conséquences sur la genèse des phtanites. Comptes Rendus de l’Académie des Sciences de Paris 326, 763–9.Google Scholar
Dabard, MP, Loi, A, Pavanetto, P, Meloni, MA, Hauser, N, Matteini, M and Funedda, A (2021) Provenance of Ediacaran-Ordovician sediments of the Medio Armorican Domain, Brittany, West France: constraints from U/Pb detrital zircon and Sm–Nd isotope data. Gondwana Research 90, 6376.CrossRefGoogle Scholar
Dabard, MP, Loi, A and Peucat, JJ (1996) Zircon typology combined with Sm-Nd whole-rock isotope analysis to study Brioverian sediments from the Armorican Massif. Sedimentary Geology 101, 243–60.CrossRefGoogle Scholar
Dabard, MP and Simon, B (2011) Discordance des Séries Rouges Initiales sur le socle briovérien: exemple de la carrière des Landes. Bulletin de la Société Géologique et Minéralogique de Bretagne 8, 3344.Google Scholar
Dalrymple, RW (2010) Tidal depositional systems. In Facies Models 4 (eds James, NP and Dalrymple, RW), pp. 201231. St John’s, Newfoundland: Geological Association of Canada.Google Scholar
Dangeard, L, Doré, F and Juignet, P (1961) Le Briovérien supérieur de Basse Normandie (étage de la Laize), série à turbidites, a tous les caractères d’un flysch. Revue de Géographie Physique et de Géologie Dynamique 4, 251–9.Google Scholar
Deflandre, G (1955) Paleocryptidium n. g. cayeuxi n. sp., microorganismes incertae sedis des phtanites briovériens bretons. Comptes Rendus Sommaires de la Société Géologique de France 9–10, 182–5.Google Scholar
Denis, E (1988) Les sédiments briovériens (Protérozoïque supérieur) de Bretagne septentrionale et occidentale: nature, mise en place et évolution. Mémoires et Documents du Centre Armoricain d’Etude Structurale des Socles 18, 263.Google Scholar
Denis, E and Dabard, MP (1988) Sandstone petrography and geochemistry of late Proterozoic sediments of the Armorican Massif (France) - a key to basin development during the Cadomian Orogeny. Precambrian Research 42, 189206.CrossRefGoogle Scholar
Dickinson, WR and Gehrels, GE (2009) Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth Planetary Science Letters 288, 115–25.CrossRefGoogle Scholar
Dissler, E, Doré, F, Dupret, L, Gresselin, F and Le Gall, J (1988) L’évolution géodynamique cadomienne du Nord-Est du Massif armoricain. Bulletin de la Société Géologique de France 4, 801–14.CrossRefGoogle Scholar
Du, R, Tian, L and Li, H (1986) Discovery of megafossils in the Gaoyuzhuang Formation of the Changchengian System, Jixian. Acta Geologica Sinica 59, 115–20.Google Scholar
Fedonkin, MA (1985) Paleoichnology of Vendian metazoa. In The Vendian System 1: Historic-Geological and Palaeontological Basis (eds Sokolov, BS and Ivanovskiy, AB), pp. 112–6. Moscow: Nauka.Google Scholar
Fedonkin, MA (1990) Paleoichnology of Vendian metazoa. In The Vendian System 1: Paleontology (eds Sokolov, BS and Iwanoski, AB), pp. 132341. Berlin: Springer.Google Scholar
Gage, JD and Tyler, PA (1991) Deep-Sea Biology: A Natural History of Organisms at the Deep-Sea Floor. Cambridge, UK: Cambridge University Press, 504 pp.CrossRefGoogle Scholar
Gehling, JG (1999) Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios 14, 4057.CrossRefGoogle Scholar
Geinitz, HB (1867) Die organischen Ueberreste im Dachschiefer von Wurzbach bei Lobenstein. In Ueber ein Aequivalent der Takonischen Schiefer Nordamerika’s in Deutschland und dessen Geologische Stellung (eds Geinitz, HB and Liebe, KT), pp. 124. Dresden: Druck von E. Blochmann & Sohn.Google Scholar
Gougeon, RC, Mángano, MG, Buatois, LA, Narbonne, GM and Laing, BA (2018a) Early Cambrian origin of the shelf sediment mixed layer. Nature Communications 9, 1909.CrossRefGoogle ScholarPubMed
Gougeon, R, Néraudeau, D, Dabard, MP, Pierson-Wickmann, AC, Polette, F, Poujol, M and Saint-Martin, JP (2018b) Trace fossils from the Brioverian (Ediacaran–Fortunian) in Brittany (NW France). Ichnos 25, 1124.CrossRefGoogle Scholar
Gougeon, R, Néraudeau, D, Poujol, M and Loi, A (2019) Loops, circles, spirals and the appearance of guided behaviors from the Ediacaran-Cambrian of Brittany, NW France. Estudios Geológicos 75, p002, 11–3.Google Scholar
Graindor, M-J (1957) Le Briovérien dans le Nord-Est du Massif Armoricain. Mémoires pour servir à l’explication de la Carte Géologique détaillée de la France. Paris: Ministère de l’Industrie et du Commerce, 211 pp.Google Scholar
Guerrot, C, Calvez, JY, Bonjour, JL, Chantaine, J, Chauvel, JJ, Dupret, L and Rabu, D (1992) Le Briovérien de Bretagne centrale et occidentale: nouvelles données radiométriques. Comptes Rendus de l’Académie des Sciences de Paris 315, 1741–6.Google Scholar
Guerrot, C, Peucat, JJ and Dupret, L (1989) Données nouvelles sur l’âge du système briovérien (Protérozoïque supérieur) dans le Nord du Massif armoricain. Comptes Rendus de l’Académie des Sciences de Paris 308, 8992.Google Scholar
Häntzschel, W (1975) Treatise on Invertebrate Paleontology. Part W, Miscellanea, supplement 1: Trace Fossils and Problematica. Boulder: The Geological Society of America and The University of Kansas.Google Scholar
Heer, O (1876) Flora Fossilis Helvetiae. Die Vorweltliche Flora der Schweiz. Zürich: Verlag von J. Wurster & Comp.Google Scholar
Hofmann, HJ (1971) Precambrian fossils, pseudofossils and problematica in Canada. Geological Survey of Canada, Bulletin 189, 1146.Google Scholar
Hofmann, HJ, Cecile, MP and Lane, LS (1994) New occurrences of Oldhamia and other trace fossils in the Cambrian of the Yukon and Ellesmere Island, arctic Canada. Canadian Journal of Earth Sciences 31, 767–82.CrossRefGoogle Scholar
Horn, M (1989) Die Lebensspur Spirodesmos im Unterkarbon des Östlichen Rheinischen Schiefergebirges. Bulletin de la Société Belge de Géologie 98, 385–91.Google Scholar
Huckriede, R (1952) Eine spiralförmige Lebensspur aus dem Kulmkieselschiefer von Biedenkopf an der Lahn (Spirodesmos archimedeus n. sp.). Paläontologische Zeitschrift 26, 175–80.CrossRefGoogle Scholar
Huettel, RN (2004) Reproductive behaviour. In Nematode Behaviour (eds Gaugler, R and Bilgrami, AL), pp. 127149. Wallingford: CABI Publishing.CrossRefGoogle Scholar
Ivantsov, AY, Gritsenko, VP, Paliy, VM, Velikanov, VA, Konstantinenko, LI, Menasova, AS, Fedonkin, MA, Zakrevskaya, MA and Serezhnikova, EA (2015) Upper Vendian Macrofossils of Eastern Europe. Middle Dniester Area and Volhynia. Moscow: Borissiak Paleontological Institute, Russian Academy of Sciences, 144 pp.Google Scholar
Jenkins, RJ (1995) The problems and potential of using animal fossils and trace fossils in terminal Proterozoic biostratigraphy. Precambrian Research 73, 5169.CrossRefGoogle Scholar
Jensen, S (2003) The Proterozoic and earliest Cambrian trace fossil record; patterns, problems and perspectives. Integrative and Comparative Biology 43, 219–28.CrossRefGoogle ScholarPubMed
Jensen, S and Palacios, T (2016) The Ediacaran-Cambrian trace fossil record in the Central Iberian Zone, Iberian Peninsula. Comunicações Geológicas 103 (Especial I), 8392.Google Scholar
Jones, DOB, Alt, CHS, Priede, IG, Reid, WDK, Wigham, BD, Billett, DSM, Gebruk, AV, Rogacheva, A and Gooday, AJ (2013) Deep-sea surface-dwelling enteropneusts from the Mid-Atlantic Ridge: their ecology, distribution and mode of life. Deep Sea Research II 98, 374–87.CrossRefGoogle Scholar
Kitchell, JA, Kitchell, JF, Johnson, GL and Hunkins, KL (1978) Abyssal traces and megafauna: comparison of productivity, diversity and density in the Arctic and Antarctic. Paleobiology 4, 171–80.CrossRefGoogle Scholar
Knoll, AH and Carroll, SB (1999) Early animal evolution: emerging views from comparative biology and geology. Science 284, 2129–37.CrossRefGoogle ScholarPubMed
Książkiewicz, M (1977) Trace fossils in the flysch of the Polish Carpathians. Palaeontologia Polonica 36, 1208.Google Scholar
Le Corre, C, Auvray, B, Ballèvre, M and Robardet, M (1991) Le Massif Armoricain. Sciences Géologiques, Bulletin 44, 31103.CrossRefGoogle Scholar
Lebesconte, P (1886) Constitution générale du Massif Breton. Bulletin de la Société Géologique de France, 3ème série 17, 776–91.Google Scholar
Lemche, H, Hansen, B, Madsen, FJ, Tendal, OS and Wolff, T (1976) Hadal life as analyzed from photographs. Videnskabelige Meddelelser dansk naturhistorisk Forening 139, 263336.Google Scholar
Linnemann, U, Ovtcharova, M, Schaltegger, U, Gärtner, A, Hautmann, M, Geyer, G, Vickers-Rich, P, Rich, T, Plessen, B, Hofmann, M, Zieger, J, Krause, R, Kriesfeld, L and Smith, J (2019) New high-resolution age data from the Ediacaran–Cambrian boundary indicate rapid, ecologically driven onset of the Cambrian explosion. Terra Nova 31, 4958.CrossRefGoogle Scholar
Liu, AG, McIlroy, D and Brasier, MD (2010) First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfoundland. Geology 38, 123–6.CrossRefGoogle Scholar
Logan, GA, Hayes, JM, Hieshima, GB and Summons, RE (1995) Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376, 53–6.CrossRefGoogle ScholarPubMed
MacNaughton, RB and Narbonne, GM (1999) Evolution and ecology of Neoproterozoic-Lower Cambrian trace fossils, NW Canada. Palaios 14, 97115.CrossRefGoogle Scholar
Maletz, J (2014) Hemichordata (Pterobranchia, Enteropneusta) and the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology 398, 1627.CrossRefGoogle Scholar
Malusà, MG, Carter, A, Limoncelli, M, Villa, IM and Garzanti, E (2013) Bias in detrital zircon geochronology and thermochronometry. Chemical Geology 359, 90107.CrossRefGoogle Scholar
Mángano, MG and Buatois, LA (2014) Decoupling of body-plan diversification and ecological structuring during the Ediacaran-Cambrian transition: evolutionary and geobiological feedbacks. Proceedings of the Royal Society B: Biological Sciences 281, 20140038.CrossRefGoogle ScholarPubMed
Mángano, MG and Buatois, LA (2016) The Cambrian Explosion. In The Trace-Fossil Record of Major Evolutionary Events, Volume 1: Precambrian and Paleozoic (eds Mángano, MG and Buatois, LA), pp. 73126. Dordrecht: Springer.CrossRefGoogle Scholar
Mángano, MG and Buatois, LA (2020) The rise and early evolution of animals: where do we stand from a trace-fossil perspective? Interface Focus 10, 20190103.CrossRefGoogle ScholarPubMed
Mansuy, C and Vidal, G (1983) Late Proterozoic Brioverian microfossils from France: taxonomic affinity and implications of plankton productivity. Nature 302, 606–7.CrossRefGoogle Scholar
Manzotti, P, Poujol, M and Ballèvre, M (2015) Detrital zircon geochronology in blueschist-facies meta-conglomerates from the Western Alps: implications for the late Carboniferous to early Permian palaeogeography. International Journal of Earth Sciences 104, 703–31.CrossRefGoogle Scholar
Marusin, VV and Kuper, KE (2020) Complex tunnel systems of early Fortunian macroscopic endobenthos in the Ediacaran-Cambrian transitional strata of the Olenek Uplift (NE Siberian Platform). Precambrian Research 340, 105627.CrossRefGoogle Scholar
Mason, TR, Stanistreet, IG and Tavener-Smith, R (1983) Spiral trace fossils from the Permian Ecca Group of Zululand. Lethaia 16, 241–7.CrossRefGoogle Scholar
McMahon, WJ, Davies, NS and Went, DJ (2017) Negligible microbial matground influence on pre-vegetation river functioning: evidence from the Ediacaran-Lower Cambrian Series Rouge, France. Precambrian Research 292, 1334.CrossRefGoogle Scholar
Menasova, AS (2003) New representatives of the Vendian biota from localities of Podolia. Theoretical and Applied Aspects of Local Biostratigraphy of the Phanerozoic of Ukraine: collection of scientific works of the Institute of Geological sciences of NAS of Ukraine. Kiev: Institute of Geological Sciences of National Academy of Sciences of Ukraine, pp. 139–42.Google Scholar
Meysman, FJ, Middelburg, JJ and Heip, CH (2006) Bioturbation: a fresh look at Darwin’s last idea. Trends in Ecology & Evolution 21, 688–95.CrossRefGoogle Scholar
Minter, NJ and Braddy, SJ (2009) Ichnology of an Early Permian intertidal flat: the Robledo Mountains Formation of southern New Mexico, USA. Special Papers in Paleontology 82, 1107.Google Scholar
Minter, NJ, Buatois, LA, Lucas, SG, Braddy, SJ and Smith, JA (2006) Spiral-shaped graphoglyptids from an Early Permian intertidal flat. Geology 34, 1057–60.CrossRefGoogle Scholar
Narbonne, GM and Hofmann, HJ (1987) Ediacaran biota of the Wernecke Mountains, Yukon, Canada. Palaeontology 30, 647–76.Google Scholar
Narbonne, GM, Myrow, PM, Landing, E and Anderson, MM (1987) A candidate stratotype for the Precambrian–Cambrian boundary, Fortune head, Burin Peninsula, southeastern Newfoundland. Canadian Journal of Earth Sciences 24, 1277–93.CrossRefGoogle Scholar
Néraudeau, D, Dabard, M-P, El Albani, A, Gougeon, R, Mazurier, A, Pierson-Wickmann, A-C, Poujol, M, Saint Martin, J-P and Saint Martin, S (2019) First evidence of Ediacaran–Fortunian elliptical body fossils in the Brioverian series of Brittany, NW France. Lethaia 51, 513–22.CrossRefGoogle Scholar
Néraudeau, D, Gougeon, R, Dabard, M-P and Poujol, M (2016) Les traces de vie de la limite Ediacarien-Cambrien dans le Massif armoricain. Géochroniques 140, 26–8.Google Scholar
Nio, SD and Yang, CS (1991) Diagnostic attributes of clastic tidal deposits: a review. In Clastic Tidal Sedimentology (eds Smith, DG, Reinson, GE, Zaitlin, BA and Rahmani, RA), pp. 328. Calgary: Canadian Society of Petroleum Geologists, Memoir 16.Google Scholar
Noffke, N, Gerdes, G, Klenke, T and Krumbein, WE (2001) Microbially induced sedimentary structures: a new category within the classification of primary sedimentary structures. Journal of Sedimentary Research 71, 649–56.CrossRefGoogle Scholar
Orr, PJ (2001) Colonization of the deep-marine environment during the early Phanerozoic: the ichnofaunal record. Geological Journal 36, 265–78.CrossRefGoogle Scholar
Pasteels, P and Doré, F (1982) Age of the Vire-Carolles granite. In Numerical Dating in Stratigraphy (ed Odin, GS), pp. 784–91. Chichester: John Wiley & Sons.Google Scholar
Pflüger, F (1999) Matground structures and redox facies. Palaios 14, 2539.CrossRefGoogle Scholar
Rabu, D, Chantraine, J, Chauvel, JJ, Denis, E, Balé, P and Bardy, P (1990) The Brioverian (Upper Proterozoic) and the Cadomian orogeny in the Armorican Massif. In The Cadomian Orogeny (eds D’Lemos, RS, Strachan, RA and Topley, CG), pp. 8194. Geological Society of London, Special Publication no. 51.Google Scholar
Rex, MA and Etter, RJ (2010) Deep-Sea Biodiversity: Pattern and Scale. Cambridge, MA: Harvard University Press, 368 pp.Google Scholar
Runnegar, B (1991) Precambrian oxygen levels estimated from the biochemistry and physiology of early eukaryotes. Global and Planetary Change 5, 97111.CrossRefGoogle Scholar
Runnegar, BN (1992) Evolution of the earliest animals. In Major Events in the History of Life (ed. Schopf, JW), pp. 6593. Boston: Jones and Bartlett Publishers.Google Scholar
Sacco, F (1888) Note di paleoicnologia Italiana. Atti della Società Italiana di Scienze Naturali 31, 151–92.Google Scholar
Sanders, HL and Hessler, RR (1969) Ecology of the deep-sea benthos. Science 163, 1419–24.CrossRefGoogle ScholarPubMed
Sedorko, D, Netto, RG and Horodyski, RS (2019) Tracking Silurian-Devonian events and paleobathymetric curves by ichnologic and taphonomic analyzes in the southwestern Gondwana. Global and Planetary Change 179, 4356.CrossRefGoogle Scholar
Seilacher, A (1956) Der Beginn des Kambriums als biologische Wende. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 103, 155–80.Google Scholar
Seilacher, A (1967a) Vorzeitliche Mäanderspuren. In Die Strassen der Tiere (ed Hediger, H), pp. 294306. Wiesbaden: Vieweg+Teubner Verlag.CrossRefGoogle Scholar
Seilacher, A (1967b) Fossil behavior. Scientific American 217, 7283.CrossRefGoogle Scholar
Seilacher, A (1974) Flysch trace fossils: evolution of behavioural diversity in the deep-sea. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 4, 233–45.Google Scholar
Seilacher, A (1977) Pattern analysis of Paleodictyon and related trace fossils. In Trace Fossils 2 (eds Crimes, TP and Harper, JC), pp. 289334. Liverpool: Seel House Press.Google Scholar
Seilacher, A (1986) Evolution of behavior as expressed in marine trace fossils. In Evolution of Animal Behavior: Paleontological and Field Approaches (eds Kitchell, JA and Nitecki, MH), pp. 6287. New York: Oxford University Press.Google Scholar
Seilacher, A, Buatois, LA and Mángano, MG (2005) Trace fossils in the Ediacaran-Cambrian transition: behavioral diversification, ecological turnover and environmental shift. Palaeogeography, Palaeoclimatology, Palaeoecology 227, 323–56.CrossRefGoogle Scholar
Seilacher, A and Pflüger, F (1994) From biomats to benthic agriculture: a biohistoric revolution. In Biostabilization of Sediments (eds Krumbein, WE, Paterson, DM and Stal, LJ), pp. 97105. Oldenburg: Bibliotheks und Informationssystem der Universität Oldenburg.Google Scholar
Shaowu, N (1998) Confirmation of the genus Grypania (megascopic alga) in Gaoyuzhuang Formation (1434Ma) in Jixian (Tianjin) and its significance. Progress in Precambrian Research 21, 3646.Google Scholar
Smith, KL, Holland, ND and Ruhl, HA (2005) Enteropneust production of spiral fecal trails on the deep-sea floor observed with time-lapse photography. Deep Sea Research Part I: Oceanographic Research Papers 52, 1228–40.CrossRefGoogle Scholar
Stepanek, J and Geyer, G (1989) Spurenfossilien aus dem Kulm (Unterkarbon) des Frankenwaldes. Beringeria 1, 155.Google Scholar
Tessier, B, Archer, AW, Lanier, WP and Feldman, HR (1995) Comparison of ancient tidal rhythmites (Carboniferous of Kansas and Indiana, USA) with modern analogues (the Bay of Mont-Saint-Michel, France). In Tidal Signatures in Modern and Ancient Sediments (eds Flemming, BW and Bartholomä, A), pp. 259–71. International Association of Sedimentologists, Special Publication no. 24.CrossRefGoogle Scholar
Trautmann, F, Paris, F and Carn, A (1999) Notice explicative, Carte géologique de France (1/50 000), feuille Rennes (317). Orléans: BRGM, 85 pp.Google Scholar
Uchman, A (1998) Taxonomy and ethology of flysch trace fossils: revision of the Marian Książkiewicz collection and studies of complementary material. Annales Societatis Geologorum Poloniae 68, 105218.Google Scholar
Uchman, A (2003) Trends in diversity, frequency and complexity of graphoglyptid trace fossils: evolutionary and palaeoenvironmental aspects. Palaeogeography, Palaeoclimatology, Palaeoecology 192, 123–42.CrossRefGoogle Scholar
Van der Grient, JM and Rogers, AD (2015) Body size versus depth: regional and taxonomical variation in deep-sea meio-and macrofaunal organisms. In Advances in Marine Biology (ed. Curry, BE), pp. 71108. Cambridge, MA: Academic Press, vol. 71.Google Scholar
Vermeesch, P (2018) IsoplotR: a free and open toolbox for geochronology. Geoscience Frontiers 9, 1479–93.CrossRefGoogle Scholar
Walcott, CD (1899) Pre-Cambrian fossiliferous formations. Bulletin of the Geological Society of America 10, 199244.CrossRefGoogle Scholar
Walter, MR, Du, R and Horodyski, RJ (1990) Coiled carbonaceous megafossils from the Middle Proterozoic of Jixian (Tianjin) and Montana. American Journal of Science 290, 133–48.Google Scholar
Walter, MR, Oehler, JH and Oehler, DZ (1976) Megascopic algae 1300 million years old from the Belt Supergroup, Montana: a reinterpretation of Walcott’s Helminthoidichnites . Journal of Paleontology 50, 872–81.Google Scholar
Went, DJ (2017) Alluvial fan, braided river and shallow-marine turbidity current deposits in the Port Lazo and Roche Jagu formations, Northern Brittany: relationships to andesite emplacements and implications for age of the Plourivo-Plouézec Group. Geological Magazine 154, 1037–60.CrossRefGoogle Scholar
Wharton, DA (2004) Survival strategies. In Nematode Behaviour (eds Gaugler, R and Bilgrami, AL), pp. 371–99. Wallingford: CABI Publishing.CrossRefGoogle Scholar
Xia, B, Lu, H, Xiong, B, He, Y and Hu, B (1987) Spirodesmos kaihuaensis in the upper Ordovician flysch in the Kaihua County, west part of Zhejiang province. Acta Sedimentologica Sinica 5, 73–9.Google Scholar
Yan, Y and Liu, Z (1998) Does Sangshuania represent eukaryotic algae or trace fossils? Acta Micropalaeontologica Sinica 15, 101–10.Google Scholar
Yancey, PH, Rhea, MD, Kemp, K and Bailey, DM (2004) Trimethylamine oxide, betaine and other osmolytes in deep-sea animals: depth trends and effects on enzymes under hydrostatic pressure. Cellular and Molecular Biology 50, 371–6.Google ScholarPubMed
Yang, Z, Yin, J and He, T (1982) Early Cambrian trace fossils from the Emei-Ganluo region, Sichuan, and other localities. Geological Review 28, 291–8.Google Scholar
Zapletal, J and Pek, I (1971) Nález spirálních bioglyfů v kulmu Nízkého Jeseníku. Časopis pro Mineralogii a Geologii 16, 285–9.Google Scholar
Supplementary material: File

Gougeon et al. supplementary material

Gougeon et al. supplementary material 1

Download Gougeon et al. supplementary material(File)
File 55.8 KB
Supplementary material: File

Gougeon et al. supplementary material

Gougeon et al. supplementary material 2

Download Gougeon et al. supplementary material(File)
File 486.4 KB