Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T15:12:05.024Z Has data issue: false hasContentIssue false

Notchia weugi gen. et sp. nov.: a new short-headed arthropod from the Weeks Formation Konservat-Lagerstätte (Cambrian; Utah)

Published online by Cambridge University Press:  31 July 2014

RUDY LEROSEY-AUBRIL*
Affiliation:
UMR 5276 CNRS, Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France

Abstract

The Weeks Formation preserves a diverse, yet largely undescribed, exceptionally preserved fauna of late Guzhangian age. Here I describe Notchia weugi gen. et sp. nov., a new arthropod characterized by a short cephalon, a trunk with 12 tergites and weakly differentiated into two morphological regions, and a spine-bearing rectangular telson. This combination of characters is incompatible with its assignment to any known groups. The new taxon also adds to examples of convergent evolution of ramified digestive glands in arthropods, possibly as an adaptation to infrequent feeding.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, P. A. & Briggs, D. E. G. 1993. Exceptional fossils record: distribution of soft-tissue preservation through the Phanerozoic. Geology 21, 527–30.2.3.CO;2>CrossRefGoogle Scholar
Bambach, R. K., Bush, A. M. & Erwin, D. H. 2007. Autecology and the filling of ecospace: key metazoan radiations. Palaeontology 50, 122.CrossRefGoogle Scholar
Beecher, C. E. 1901. Discovery of eurypterid remains in the Cambrian of Missouri. American Journal of Science 12, 364–6.CrossRefGoogle Scholar
Bergström, J. 1973. Organization, life, and systematics of trilobites. Fossils and Strata 2, 169.CrossRefGoogle Scholar
Bergström, J., Hou, X.-G. & Hålenius, J. 2007. Gut contents and feeding in the Cambrian arthropod Naraoia . GFF 129, 71–6.CrossRefGoogle Scholar
Briggs, D. E. G., Lieberman, B. S., Hendricks, J. R., Halgedahl, S. L. & Jarrard, R. D. 2008. Middle Cambrian arthropods from Utah. Journal of Paleontology 82, 238–54.Google Scholar
Bruton, D. L. 1981. The arthropod Sidneyia inexpectans, Middle Cambrian, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London B 295, 619–53.Google Scholar
Budd, G. E. & Telford, M. J. 2009. The origin and evolution of arthropods. Nature 457, 812–7.Google Scholar
Conway Morris, S. 1986. The community structure of the Middle Cambrian Phyllopod bed (Burgess Shale). Palaeontology 29, 423–67.Google Scholar
Dunlop, J. A. & Selden, P. A. 1997. The early history and phylogeny of the chelicerates. In Arthropod Relationships (eds Fortey, R. A. & Thomas, R. H.), pp. 221–35. The Systematics Association, Special Volume Series 55.Google Scholar
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D. & Peterson, K. J. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334, 1091–6.CrossRefGoogle ScholarPubMed
Hesselbo, S. P. 1989. The aglaspidid arthropod Beckwithia from the Cambrian of Utah and Wisconsin. Journal of Paleontology 63, 635–42.Google Scholar
Hou, X., Aldridge, R. J., Bergström, J., Siveter, D. J., Siveter, D. J. & Feng, X. 2004. The Cambrian Fossils of Chengjiang, China. The Flowering of Early Animal Life. Oxford: Blackwell, 233 pp.Google Scholar
Hou, X. & Bergström, J. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils and Strata 45, 1116.Google Scholar
Hou, X., Bergström, J., Wang, H., Feng, X. & Chen, A. 1999. The Chengjiang Fauna. Exceptionally Well-Preserved Animals from 530 Million Years Ago. Kunming: Yunnan Science and Technology Press, 170 pp (in Chinese with English summary).Google Scholar
Hughes, C. P. 1975. Redescription of Burgessia bella from the Middle Cambrian Burgess Shale, British Columbia. Fossils and Strata 4, 415–35.Google Scholar
Jensen, S. 1990. Predation by early Cambrian trilobites on infaunal worms – evidence from the Swedish Mickwitzia Sandstone. Lethaia 23, 2942.CrossRefGoogle Scholar
Lamsdell, J. C. 2013. Revised systematics of Palaeozoic ‘horseshoe crabs’ and the myth of monophyletic Xiphosura. Zoological Journal of the Linnean Society 167, 127.Google Scholar
Lerosey-Aubril, R., Hegna, T. A., Babcock, L. E., Bonino, E. & Kier, C. 2014. Arthropod appendages from the Weeks Formation Konservat-Lagerstätte: new occurrences of anomalocaridids in the Cambrian of Utah, USA. Bulletin of Geosciences 89, 269–82.CrossRefGoogle Scholar
Lerosey-Aubril, R., Hegna, T. A., Kier, C., Bonino, E., Habersetzer, J. & Carré, M. 2012. Controls on gut phosphatisation: the trilobites from the Weeks Formation Lagerstätte (Cambrian; Utah). PLoS ONE 7 (3), e32934. doi: 10.1371/journal.pone.0032934.Google Scholar
Lerosey-Aubril, R., Ortega-Hernández, J., Kier, C. & Bonino, E. 2013. Occurrence of the Ordovician-type aglaspidid Tremaglaspis in the Cambrian Weeks Formation (Utah, USA). Geological Magazine 150, 945–51.CrossRefGoogle Scholar
Lerosey-Aubril, R., Ortega-Hernández, J. & Zhu, X. 2013. The first aglaspidid sensu stricto from the Cambrian of China (Sandu Formation, Guangxi). Geological Magazine 150, 565–71.Google Scholar
Miller, J. F., Evans, K. R. & Dattilo, B. F. 2012. The Great American Carbonate Bank in the miogeocline of western central Utah: tectonic influences on sedimentation. In The Great American Carbonate Bank: The Geology and Economic Resources of the Cambro-Ordovician Sauk Sequence of Laurentia (eds Derby, J. R., Fritz, R., Longacre, S. A., Morgan, W. & Sternbach, C.), pp. 769854. American Association of Petroleum Geologists Memoir 98.Google Scholar
Moore, R. A. & Braddy, S. J. 2005. A glyptocystitid cystoid affinity for the putative stem group chelicerate (Arthropoda: Aglaspidida or Xiphosura) Lemoneites from the Ordovician of Texas, USA. Lethaia 38, 293–6.Google Scholar
Öpik, A. A. 1961. Alimentary caeca of agnostids and other trilobites. Palaeontology 3, 410–38.Google Scholar
Orłowski, S. 1983. A Lower Cambrian aglaspid from Poland. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 4, 237–41.Google Scholar
Ortega-Hernández, J., Braddy, S. J. & Rak, S. 2010. An illaenid trilobite and xiphosuran affinity for the putative aglaspidid arthropods Caryon and Drabovaspis, from the Upper Ordovician Letná Formation, Bohemia. Lethaia 43, 427–31.Google Scholar
Ortega-Hernández, J., Legg, D. A. & Braddy, S. J. 2013. The phylogeny of aglaspidid arthropods and the internal relationships within Artiopoda. Cladistics 29, 1545.CrossRefGoogle ScholarPubMed
Raasch, G. O. 1939. Cambrian Merostomata. Special Papers of the Geological Society of America 19, 1146.Google Scholar
Rees, M. N. 1986. A fault-controlled trough through a carbonate platform: the Middle Cambrian House Range embayment. Geological Society of America Bulletin 97, 1054–69.Google Scholar
Repina, L. N. & Okuneva, O. G. 1969. Cambrian arthropods of the Maritime Territory. Paleontological Journal 3, 95103.Google Scholar
Resser, C. E. 1931. A new middle Cambrian merostome crustacean. Proceedings of the United States National Museum 79(33), 1–4.Google Scholar
Robison, R. A. & Babcock, L. E. 2011. Systematics, paleobiology, and taphonomy of some exceptionally preserved trilobites from Cambrian Lagerstätten of Utah. Kansas University Paleontological Contributions 5, 147.Google Scholar
Siebold, C. T. von. 1848. Lehrbuch der vergleichenden Anatomie der Wirbellosen Thiere. Erster Theil. In Lehrbuch der Vergleichenden Anatomie (eds Siebold, C. T. von & Stannius, H.), pp. 1679. Verlag von Veit & Company.Google Scholar
Stein, M. 2013. Cephalic and appendage morphology of the Cambrian arthropod Sidneyia inexpectans Walcott, 1911. Zoologischer Anzeiger 253, 164–78.CrossRefGoogle Scholar
Størmer, L. 1956. A Lower Cambrian merostome from Sweden. Arkiv für Zoologi, serie 2 9, 507–14.Google Scholar
Tetlie, O. E. & Moore, R. A. 2004. A new specimen of Paleomerus hamiltoni (Arthropoda; Arachnomorpha). Transactions of the Royal Society of Edinburgh: Earth Sciences 94, 195–8.Google Scholar
Vannier, J. & Chen, J.-Y. 2002. Digestive system and feeding mode in Cambrian naraoiid arthropods. Lethaia 35, 107–20.CrossRefGoogle Scholar
Vannier, J., Liu, J., Lerosey-Aubril, R., Vinther, J. & Daley, A. C. 2014. Sophisticated digestive systems in early arthropods. Nature Communications 5, 3641. doi: 10.1038/ncomms4641.Google Scholar
Van Roy, P. 2006. A new aglaspidid arthropod from the Upper Ordovician of Morocco with remarks on the affinities and limitations of Aglaspidida. Transactions of the Royal Society of Edinburgh: Earth Sciences 96, 327–50.Google Scholar
Whittington, H. B., Chatterton, B. D. E., Speyer, S. E., Fortey, R. A., Owens, R. M., Chang, W. T., Dean, R. A., Jell, P. A., Laurie, J. R., Palmer, A. R., Repina, L. N., Rushton, A. W. A., Shergold, J. H., Clarkson, E. N. K., Wilmot, N. V. & Kelly, S. R. A. 1997. Treatise on Invertebrate Paleontology, Part O, Arthropoda 1, Trilobita, Revised (ed. Kaesler, R. L.). Boulder, Colorado and Lawrence, Kansas: Geological Society of America and University of Kansas Press, 530 pp.Google Scholar
Zhang, X., Han, J. & Shu, D. 2002. New occurrence of the Burgess Shale arthropod Sidneyia in the Early Cambrian Chengjiang Lagerstätte (South China), and revision of the arthropod Urokodia . Alcheringa 26, 118.CrossRefGoogle Scholar
Zhang, X.-L., Shu, D.-G. & Erwin, D. H. 2007. Cambrian naraoiids (Arthropoda): morphology, ontogeny, systematics and evolutionary relationships. Journal of Paleontology 81, 152.Google Scholar
Zhuravlev, A. Y. 2001. Biotic diversity and structure during the Neoproterozoic-Ordovician transition. In Ecology of the Cambrian Radiation (eds Zhuravlev, A. Y. & Riding, R.), pp. 173–99. New York: Columbia University Press.Google Scholar