Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T05:56:45.292Z Has data issue: false hasContentIssue false

The Origin of Garnets in the Borrowdale Volcanic Series and Associated Rocks, English Lake District

Published online by Cambridge University Press:  01 May 2009

R. L. Oliver
Affiliation:
℅ Photographic Survey Corporation, Ltd., Box 1339, Colombo, Ceylon.

Abstract

Almandine-rich garnets occur as euhedral crystals in extrusive and intrusive rocks which range in composition from 59 per cent, to 70 per cent. SiO2. Eight complete garnet analyses (major and trace elements) indicate a small variation in composition which, together with corresponding variation of physical properties, appear to correlate with the mineralogical composition of the containing rock. Field, microscopic and chemical evidence suggests, on balance, that the garnets are pyrogenetic. Magmatic conditions suitable for the crystallisation of almandine-rich garnet are discussed.

Type
Articles
Copyright
Copyright © Cambridge University Press 1956

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alderman, A. R., 1935. Almandine from Botallack, Cornwall. Miner. Mag., xxiv, 4248.Google Scholar
Brammall, A., and Bracewell, S., 1933. Garnet in the Dartmoor Granite; its Petrogenetic Significance. Nature, cxxxi, 250.Google Scholar
Brammall, A., and Bracewell, S., 1936. The Variability of Garnet in Granites. Miner. Mag., xxiv, 254256.Google Scholar
Brammall, A., and Harwood, H. S., 1932. The Dartmoor Granites: Their Genetic Relationship. Quart. Journ. Geol. Soc., lxxxviii, 171.CrossRefGoogle Scholar
Cox, P. T., 1926. Geology of the Rakaia Gorge District. Trans. New Zealand Inst., lvi, 95101.Google Scholar
Cross, Whitman, 1886. On the Occurrence of Topaz and Garnet in Lithophyses of Rhyolite. Amer. Journ. Sci., Ser. 2, xxxi, 432.CrossRefGoogle Scholar
Edwards, A. B., 1932. The Geology and Petrology of the Black Spur Area (Healesville). Proc. Roy. Soc. Victoria, xliv, 4976.Google Scholar
Edwards, A. B., 1936. On the Occurrence of Almandine Garnets in some Devonian Igneous Rocks of Victoria. Proc. Roy. Soc. Victoria, xlix, pt. 1 (n.s.), 40.Google Scholar
Fleischer, M., 1937. The Relation between Chemical Composition and Physical Properties in the Garnet Group. Amer. Min., xxii, 751759.Google Scholar
Folinsbee, R. E., 1941. The Chemical Composition of Garnet associated with Cordierite. Amer. Min., xxvi, 5053.Google Scholar
Gjelsvik, Tore, 1947. Anorthosittkomplekset i Heidal. Norsk. Geol. Tidsskrift, xxvi, 54.Google Scholar
Goldschmidt, V. M., 1954. Geochemistry. Oxford.Google Scholar
Green, J. F. N., 1915. The Garnets and Streaky Rocks of the English Lake District. Miner. Mag., xvii, 207217.Google Scholar
Hadfield, G. S. and Whiteside, H. C. M., 1936. The Borrowdale Volcanic Series of High Rigg and the Adjoining Low Rigg Microgranite. Proc. Geol. Assoc., xlvii, 4264.CrossRefGoogle Scholar
Hancox, E. C., 1934. The Haweswater Dolerite. Proc. Liverpool Geol. Soc., xvi, 173197.Google Scholar
Harker, A., 1891. The Ancient Lavas of the Lake District. The Naturalist, 145147.Google Scholar
Harker, A., 1902. Notes on the Igneous Rocks of the English Lake District. Proc. Yorkshire Geol. Soc., 14.Google Scholar
Harker, A., 1932. Metamorphism. Methuen, London.Google Scholar
Harker, A., and Marr, J. E., 1893. Supplementary Notes on the Metamorphic Rocks around the Shap Granite. Quart. Journ. Geol. Soc. xlix, 359371.CrossRefGoogle Scholar
Harker, R. I., 1954. Further data on the Petrology of the Politic Horn-felses of the Carn Chuinneag-Inchbae Region, Ross-shire, with Special Reference to the Status of Almandine. Geol. Mag., xci, 445462.CrossRefGoogle Scholar
Hartley, J. J., 1932. The Volcanic and other Igneous Rocks of Great and Little Langdale, Westmorland. Proc. Geol. Assoc., xliii, 3269.CrossRefGoogle Scholar
Hartley, J. J., 1942. The Geology of Helvellyn and the Southern Part of Thirlmere. Quart. Journ. Geol. Soc., xcvii, 129162.Google Scholar
Heritsch, F., 1927. Studien über den Chemismus der Granaten. Neues Jahrb. für Min., usw., B.B. lv., 6091.Google Scholar
Hollingsworth, S. E., 1937. Carrock Fell afcd Adjoining Areas. Proc. Yorkshire Geol. Soc., xxiii, 208218.CrossRefGoogle Scholar
Jaffe, H. W., 1951. The Role of Yttrium and other Minor Elements in the Garnet Group. Amer. Min., xxxvi, 133135.Google Scholar
Marr, J. E., 1900. Notes on the Geology of the English Lake District. Proc. Geol. Assoc., xvi, 449483.CrossRefGoogle Scholar
Marr, J. E., 1916. The Geology of the Lake District. Cambridge.Google Scholar
Michel-Levy, M. C., 1951. Reproduction artificielle de Grenats ferro-manganesiferes; serie almandin-spessartine. C.R. Acad. Sci., Paris, ccxxxii, 19531954.Google Scholar
Miyashiro, A., 1953. Calcium-poor Garnet in Relation to Metamorphism. Geochim. Cosmochim. Acta, iv, 179208.CrossRefGoogle Scholar
Nockolds, S. R. and Allen, R., 1953. The Geochemistry of some Igneous Rock Series. Geochim. Cosmochim. Acta, iv, 105142.CrossRefGoogle Scholar
Ohmori, K., 1941. Studies of Garnet from Suisyo-yama in the Hida Mountains. Journ. Jap. Assoc. Min. Pet. Econ. Geol., xxv, 189205.Google Scholar
Oliver, R. L., 1954. Welded Tuffs in the Borrqwdale Volcanic Series, English Lake District, with a Note on Similar Rocks in Wales. Geol. Mag., xci, 473483.CrossRefGoogle Scholar
Pabst, A., 1938. Garnets from Vesicles in Rhyolite near Ely, Nevada. Amer. Min., xxiii, 101103.Google Scholar
Ramberg, H., 1952. The Origin of Metamorphic and Metasomatic Rocks. Chicago.Google Scholar
Rastall, R. H., 1910. The Skiddaw Granite and its Metamorphism. Quart. Journ. Geol. Soc., lxvi, 116141.CrossRefGoogle Scholar
Rastall, R. H., and Wilcockson, W. H., 1915. The Accessory Minerals of the Granitic Rocks of the English Lake District. Quart. Journ. Geol. Soc., lxxi, 592622.CrossRefGoogle Scholar
Schairer, J. F., and Yagi, K., 1952. The system FeO–Al2O3–SiO2. Amer. Journ. Sci., Bowen Volume, 471512.Google Scholar
Shand, S. J., 1945. Coronas and Coronites. Bull. Geol. Soc. Amer., lvi, 247266.CrossRefGoogle Scholar
Smellie, W. R., 1915. The Igneous Rocks of Butte. Trans. Geol. Soc., Glasgow, xv, 334373.Google Scholar
Sorby, H. C., 1880. Slates of the English Lake District: part of Presidential Address. Quart. Journ. Geol. Soc., xxxvi, Proceedings, 7475.Google Scholar
Speight, R., 1928. The Geology of the Malvern Hills. New Zealand Geol. Surv. Mem., no. 1, 1416.Google Scholar
Stewart, F. H., 1942. Chemical Data on a silica-poor argillaceous hornfels and its constituent minerals. Miner. Mag., xxvi, 260266.Google Scholar
Stewart, F. H., 1950. Note on Garnet Crystals from Cairnie, Aberdeenshire. Miner. Mag., xxix, 252253.Google Scholar
Trotter, F. M., Hollingworth, S. E., Eastwood, T., and Rose, W. C. C., 1937. Sheet Mem. Geol. Surv. Great Britain. Gosforth District.Google Scholar
Walker, E. E., 1904. Notes on the garnet bearing and associated rocks of the Borrowdale Volcanic Series. Quart. Journ. Geol. Soc., lx, 70105.CrossRefGoogle Scholar
Williams, H., 1922. The Igneous Rocks of the Capel Curig District (North Wales). Proc. Liverpool Geol. Soc., xiii, 166206.Google Scholar
Williamson, W. O., 1935. The composite gneiss and contaminated granodiorite of Glen Shee, Perthshire. Quart. Journ. Geol. Soc. xci, 393394.Google Scholar
Wright, W. I., 1938. The Composition and Occurrence of Garnets. Amer. Min., xxiii, 436449.Google Scholar
Yoder, H. S., 1955. Almandite Garnet Stability Range. Amer. Min., xl, 342 (abstract).Google Scholar
Yoder, H. S., and Keith, M. L., 1951. Complete substitution of aluminium for silicon: the system 3MnO.Al2O3.3SiO2–3Y2O3.5Al2O3. Amer. Min. xxxvi, 519.Google Scholar