Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T17:01:44.529Z Has data issue: false hasContentIssue false

The origins of granulites: a metamorphic perspective

Published online by Cambridge University Press:  01 May 2009

S. L. Harley
Affiliation:
Department of Earth Sciences, University of Oxford, Parks Road, Oxford OX1 3PR, U.K.

Abstract

Although many recent reviews emphasize a uniformity in granulite pressure–temperature (PT) conditions and paths, granulites in reality preserve a spectrum of important petrogenetic features which indicate diversity in their modes of formation. A thorough survey of over 90 granulite terranes or occurrences reveals that over 50% of them record PT conditions outside the 7.5 ± 1 kbar and 800 ± 50 °C average granulite regime preferred by many authors. In particular, an increasing number of very high temperature (900−1000 °C) terranes are being recognized, both on the basis of distinctive mineral assemblages and geothermobarometry. Petrogenetic grid and geothermobarometric approaches to the determination and interpretation of PT histories are both evaluated within the context of reaction textures to demonstrate that the large range in PT conditions is indeed real, and that both near-isothermal decompression (ITD) and near-isobaric cooling (IBC) PT paths are important. Amphibolite–granulite transitions promoted by the passage of CO2-rich fluids, as observed in southern India and Sri Lanka, are exceptional and not representative of fluid-related processes in the majority of terranes. It is considered, on the contrary, that fluid-absent conditions are typical of most granulites at or near the time of their recorded thermal maxima.

ITD granulites are interpreted to have formed in crust thickened by collision, with magmatic additions being an important extra heat source. Erosion alone is not, however, considered to be the dominant post-collisional thinning process. Instead, the ITD paths are generated during more rapid thinning (1−2 mm/yr exposure) related to tectonic exhumation during moderate-rate or waning extension. IBC granulites may have formed in a variety of settings. Those which show anticlockwise PT histories are interpreted to have formed in and beneath areas of voluminous magmatic accretion, with or without additional crustal extension. IBC granulites at shallow levels (< 5 kbar) may also be formed during extension of normal thickness crust, but deeper-level IBC requires more complex models. Many granulites exhibiting IBC at deep crustal levels may have formed in thickened crust which underwent very rapid (5 mm/yr) extensional thinning subsequent to collision. It is suggested that the preservation of IBC paths rather than ITD paths in many granulites is primarily related to the rate and timescale of extensional thinning of thickened crust, and that hybrid ITD to IBC paths should also be observed.

Most IBC granulites, and probably many ITD granulites, have not been exposed at the Earth's surface as a result of the tectonic episodes which produced them, but have resided in the middle and lower crust for long periods of time (100−2000 Ma) following these events. The eventual exhumation of most granulite terranes only occur through their incorporation in later tectonic and magmatic events unrelated to their formation.

Type
Articles
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermand, D., Herd, R. K. J., Reinhardt, M. & Windley, B. F. 1987. Sapphirine paragenesis from the Caraiba complex, Bahai, Brazil: stability of sapphirine in iron-bearing rocks. Journal of Metamorphic Geology 5, 323–40.CrossRefGoogle Scholar
Ackermand, D., Lal, R. K. & Seifert, F. In press. Metamorphic evolution of sapphirine-spinel granulites from Longuparti, Eastern Ghats, India. Contributions to Mineralogy & Petrology.Google Scholar
Albarede, F. 1976. Thermal models of post-tectonic decompression as exemplified by the Haut-Allier granulites (Massif Central, France). Bulletin de la Societé Geologique de France 18, 1023–32.CrossRefGoogle Scholar
Anovitz, L. M. & Essene, E. J. 1987. Compatibility of geobarometers in the system CaO-FeO-A12O3-SiO2-TiO2 (CFAST): implications for garnet mixing models. Journal of Geology 95, 633–45.CrossRefGoogle Scholar
AranovichL., Ya. L., Ya. & Podlesskii, K. K. 1983. The cordierite-garnet-sillimanite-quartz equilibrium, experiments and applications. In Kinetics and Equilibrium in Mineral Reactions (ed. Saxena, S.K.), pp. 173–98. New York: Springer Verlag.CrossRefGoogle Scholar
Arima, M. & Barnett, R. L. 1984. Sapphirine bearing granulites from the Sipiwesk Lake area of the Late Archaean Piturtonei granulite terrain, Manitoba, Canada. Contributions to Mineralogy & Petrology 88, 102–12.CrossRefGoogle Scholar
Baker, J., Powell, R., Sandiford, M. & Muhling, J. 1987. Corona textures between kyanite, garnet and gedrite in gneisses from Erabiddy, Western Australia. Journal of Metamorphic Geology 5, 357–70.CrossRefGoogle Scholar
Berg, J. H. 1977. Regional geobarometry in the contact aureoles of the anorthositic Nain Complex, Labrador. Journal of Petrology 18, 399430.CrossRefGoogle Scholar
Bhattacharya, A. & Sen, S. K. 1986. Granulite metamorphism, fluid buffering, and dehydration melting in the Madras charnockites and metapelites. Journal of Petrology 27, 1119–41.CrossRefGoogle Scholar
Bhattacharya, P. K. & Mukherjee, S. 1987. Granulites in and around the Bengal Anorthosite, eastern India; genesis of coronal garnet, and evolution of the granuliteanorthosite complex. Geological Magazine 124, 2132.CrossRefGoogle Scholar
Black, L. P., Harley, S. L., Sun, S. S. & McCulloch, M. T. 1987. The Rayner Complex of East Antarctica: complex isotopic systematics with a Proterozoic mobile belt. Journal of Metamorphic Geology 5, 126.CrossRefGoogle Scholar
Blight, D. F. & Oliver, R. L. 1977. The metamorphic geology of the Windmill Islands, Antarctica: A preliminary account. Journal of the Geological Society of Australia 24, 239–62.CrossRefGoogle Scholar
Bohlen, S. R. 1987. Pressure-temperature-time paths and a tectonic model for the evolution of granulites. Journal of Geology 95, 617–32.CrossRefGoogle Scholar
Bohlen, S. R., Valley, J. W. & Essene, E. J. 1985. Metamorphism in the Adirondacks I. Petrology, pressure, and temperature. Journal of Petrology 26, 971–92.CrossRefGoogle Scholar
Bohlen, S. R., Wall, V. J. & Boettcher, A. L. 1983 a.Experimental investigations and geological applications of equilibria in the system FeO-TiO2-Al2O3-SiO2-H2O. American Mineralogist 68, 1049–58.Google Scholar
Bohlen, S. R., Wall, V. J. & Boettcher, A. L. 1983 b. Geobarometry in granulites. In Kinetics and Equilibrium in Mineral Reactions (ed. Saxena, S.K.), pp. 141–72. New York: Springer-Verlag.CrossRefGoogle Scholar
Boullier, A. M. & Barbey, P. 1988. Granulite facies return ticket. A polycyclic two-stage corona growth in the Iforas granulitic unit (Mali). Journal of Metamorphic Geology 6, 235–53.CrossRefGoogle Scholar
Chacko, T., Ravindra Kumar, G. R. & Newton, R. C. 1987. Metamorphic PT conditions of the Kerala (South India) Khondalite Belt, a granulite facies supracrustal terrain. Journal of Geology 95, 343–58.CrossRefGoogle Scholar
Clemens, J. & Vielzeuf, D. 1987. Constraints on melting and magma production in the crust. Earth & Planetary Science Letters 86, 287306.CrossRefGoogle Scholar
Coolen, J. J. M. 1980. Chemical petrology of the Furua granulite complex, southern Tansania. GUA (Amsterdam) Paper 13, 1258.Google Scholar
Currie, K. L. & Gittins, J. 1988. Contrasting sapphirine parageneses from Wilson Lake, Labrador and their tectonic implications. Journal of Metamorphic Geology 6, 603–22.CrossRefGoogle Scholar
Dahl, P. S. 1980. The thermal-compositional dependence of Fe2+-Mg2+ distributions between coexisting garnet and pyroxene: applications to geothermometry. American Mineralogist 65, 852–66.Google Scholar
Droop, G. T. R. & Bucher-Nurminen, K. 1984. Reaction textures and metamorphic evolution of sapphirine-bearing granulites from the Gruf Complex, Italian central Alps. Journal of Petrology 25, 766803.CrossRefGoogle Scholar
Ellis, D. J. 1980. Osumilite-sapphirine-quartz granulites from Enderby Land, Antarctica: PT conditions of metamorphism, implications for garnet-cordierite equilibria and the evolution of the deep crust. Contributions to Mineralogy & Petrology 74, 201–10.CrossRefGoogle Scholar
Ellis, D. J. 1983. The Napier and Rayner Complexes of Enderby Land, Antarctica: Contrasting styles of metamorphism and tectonism. In Antarctic Geoscience (ed. Oliver, R.L., James, P. R.& Jago, J. B.), pp. 2024. Cambridge: Cambridge University Press.Google Scholar
Ellis, D. J. 1987. Origin and evolution of granulites in normal and thickened crust. Geology 15, 167–70.2.0.CO;2>CrossRefGoogle Scholar
Ellis, D. J. & Green, D. H. 1979. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe–Mg exchange equilibria. Contributions to Mineralogy & Petrology 71, 1322.CrossRefGoogle Scholar
Ellis, D. J. & Green, D. H. 1985. Garnet-forming reactions in mafic granulites from Enderby Land, Antarctica – Implications for geothermometry and geobarometry. Journal of Petrology 26, 633–62.CrossRefGoogle Scholar
Ellis, D. J., Sheraton, J. W., England, R. N. & Dallwitz, W. B. 1980. Osumilite-sapphirine-quartz granulites from Enderby Land, Antarctica – mineral assemblages and reactions. Contributions to Mineralogy & Petrology 72, 123–43.CrossRefGoogle Scholar
Elphick, S. C., Ganguly, J. & Loomis, T. P. 1985. Experimental determination of cation diffusivities in aluminosilicate garnets. I. Experimental methods and interdiffusion data. Contributions to Mineralogy & Petrology 90, 3644.CrossRefGoogle Scholar
England, P. C. 1987. Diffuse continental deformation: length scales, rates and metamorphic evolution. In Tectonic Settings of Regional Metamorphisms (ed. Oxburgh, E.R., Yardley, B. W. D.& England, P. C.), pp. 322. London, The Royal Society: Cambridge University Press.Google Scholar
England, P. C. & Thompson, A. B. 1984. Pressure-Temperature-time paths of regional metamorphisms. I. Heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology 25, 894928.CrossRefGoogle Scholar
England, P. C. & Thompson, A. B. 1986. Some thermal and tectonic models for crustal melting in continental collision zones. In Collisional Tectonics (ed.Coward, M. P.&Ries, A. C.), pp. 8394. Geological Society of London Special Publication no. 19.Google Scholar
Ferry, J. M. & Spear, F. S. 1978. Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contributions to Mineralogy & Petrology 66, 113–17.CrossRefGoogle Scholar
Frisch, T. 1984. Granulite facies metamorphism and anatexis in the northernmost Canadian shield, Arctic Canada. (abstract). Geological Society of America Congress 1984.Google Scholar
Frost, B. R. & Frost, C. D. 1987. CO2, melts and granulite metamorphism. Nature 327, 503–6.CrossRefGoogle Scholar
Glassley, W. E. & Sorenson, K. 1980. Constant P sT amphibolite to granulite facies transition in Agto (West Greenland) metadolerites: implications and applications. Journal of Petrology 21, 69105.CrossRefGoogle Scholar
Goldsmith, J. R. & Newton, R. C. 1977. Scapolite-plagioclase stability relations at high pressure and temperatures in the system NaAlSi3O8-CaAl2Si3O8-CaCO3-CaSO4. American Mineralogist 62, 1063–81.Google Scholar
Graham, C. M. & Powell, R. 1984. A garnet-hornblende geothermometer: calibration, testing and application to the Pelona schist, Southern California. Journal of Metamorphic Geology 2, 1331.CrossRefGoogle Scholar
Green, D. H. & Ringwood, A. E. 1967. An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochimica et Cosmochimica Acta 31, 767833.CrossRefGoogle Scholar
Green, D. H., Faloon, T. J. & Taylor, W. R. 1987. Mantle-derived-magma – roles of variable source peridotite and variable C–H–O fluid compositions. In Magmatic Processes – Physiochemical Principles (ed. Mysen, B.O.), pp. 139–54. The Geochemical Society, Special Publication no. 1.Google Scholar
Grew, E. S. 1981. Granulite facies metamorphism at Molodezhnaya Station, East Antarctica. Journal of Petrology 22, 297336.CrossRefGoogle Scholar
Griffin, W. L., McGregor, V. R., Nutman, A., Taylor, P. N. & Bridgwater, D. 1980. Early Archaean granulite-facies metamorphism south of Ameralik, West Greenland. Earth & Planetary Science Letters 50, 5974.CrossRefGoogle Scholar
Griffin, W. L. & O'Reilly, S. Y. 1986. The lower crust in eastern Australia: xenolith evidence. In The Nature of the Lower Continental Crust (ed. Dawson, J.B., Carswell, D. A., Wall, J.& Wedepohl, K. H.), pp. 363–74. Geological Society of London Special Publication no. 24.Google Scholar
Groenewald, P. B. & Hunter, D. R. 1987. Granulites of the Northern Hill, Sverdrupfjella, Western Dronning Maud Land: metamorphic history from garnet-pyroxene assemblages, coronas and hydration reactions. Abstracts, 5th International Symposium on Antarctic Earth Science, Cambridge, p. 55.Google Scholar
Hansen, E. C., Newton, R. C. & Janardhan, A. S. 1984. Fluid inclusions in rocks from amphibolite-facies gneiss to charnockite progression in southern Karnataka, India: direct evidence concerning the fluids of granulite metamorphism. Journal of Metamorphic Geology 2, 249–64.CrossRefGoogle Scholar
Hansen, E. C., Janardhan, A. S., Newton, R. C., Prame, W. K. B. N. & Ravindra Kumar, G. R. 1987. Arrested charnockite formation in southern India and Sri Lanka. Contributions to Mineralogy & Petrology 96, 225–44.CrossRefGoogle Scholar
Harley, S. L. 1984 a. An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contributions to Mineralogy & Petrology 86, 359–73.CrossRefGoogle Scholar
Harley, S. L. 1984 b. The solubility of Alumina in orthopyroxene coexisting with garnet in FeO-MgO-Al2O3-SiO2 and CaO-FeO-MgO-Al2O3-SiO2. Journal of Petrology 25, 665–96.CrossRefGoogle Scholar
Harley, S. L. 1985 a. Garnet-orthopyroxene bearing granulites from Enderby Land, Antarctica: metamorphic pressure-temperature-time evolution of the Archaean Napier Complex. Journal of Petrology 26, 819–56.CrossRefGoogle Scholar
Harley, S. L. 1985 b. Paragenetic and mineral-chemical relationships in orthoamphibole-bearing gneisses from Enderby Land, east Antarctica: a record of Proterozoic uplift. Journal of Metamorphic Geology 3, 179200.CrossRefGoogle Scholar
Harley, S. L. 1987. A pyroxene-bearing metaironstone and other pyroxene-granulites from Tonagh Island, Enderby Land, Antarctica: further evidence for very high temperature (< 980 °C) Archaean regional metamorphism in the Napier Complex. Journal of Metamorphic Geology 5, 341–56.CrossRefGoogle Scholar
Harley, S. L. 1988. Proterozoic granulites from the Rauer Group, East Antarctica. I. Decompressional pressure-temperature paths deduced from mafic and felsic granulites. Journal of Petrology 29, 1059–95.CrossRefGoogle Scholar
Harley, S. L. & Green, D. H. 1982. Garnet-orthopyroxene barometry for granulites and peridotites. Nature 300, 697701.CrossRefGoogle Scholar
Harris, N. B. W. & Holland, T. J. B. 1984. The significance of cordierite-hypersthene assemblages from the Beitbridge region of the central Limpopo belt: evidence for rapid decompression in the Archaean? American Mineralogist 69, 1036–49.Google Scholar
Hensen, B. J. 1977. Cordierite-garnet bearing assemblages as geothermometers and barometers in granulite facies terranes. Tectonophysics 43, 7388.CrossRefGoogle Scholar
Hensen, B. J. 1986. Theoretical phase relations involving garnet and cordierite revisited: the influence of oxygen fugacity on the stability of sapphirine and spinel in the system Mg-Fe-Al-Si-O. Contributions to Mineralogy & Petrology 33, 191214.CrossRefGoogle Scholar
Hensen, B. J. 1987. PT grids for silica-undersaturated granulites in the system MAS (n + 4) and FMAS (n + 3) – tools for the derivation of PT paths of metamorphism. Journal of Metamorphic Geology 5, 255–71.CrossRefGoogle Scholar
Hensen, B. J. & Green, D. H. 1973. Experimental study of the stability of cordierite and garnet in pelitic compositions at high pressures and temperatures. III. Synthesis of experimental data and geological applications. Contributions to Mineralogy & Petrology 38, 151–66.CrossRefGoogle Scholar
Hiroi, Y., Shiraishi, K. & Motoyoshi, Y. 1987. Late Proterozoic paired metamorphic complexes in East Antarctica – with special reference to tectonic significance of ultramafic rocks. Abstracts, 5th International Symposium on Antarctic Earth Science, Cambridge, p. 66.Google Scholar
Hollister, L. S. & Crawford, M. L. 1986. Melt-enhanced deformation: a major tectonic process. Geology 14, 558–61.2.0.CO;2>CrossRefGoogle Scholar
Hormann, P. K., Raith, M., Raase, P., Ackermand, D. & Seifert, F. 1980. The granulite complex of Finnish Lapland: petrology and metamorphic conditions in the Ivalojoki-Inarjärvi area. Geological Survey of Finland Bulletin 308, 195.Google Scholar
Huckenholz, A. C., Lindhuber, W. & Fehr, K. T. 1981. Stability relations of grossular + quartz + wollastonite + anorthite I. The effect of andradite and albite. Neues Jahrbuch für Mineralogie Abhandlungen 142, 223–47.Google Scholar
Indares, A. & Martignole, J. 1984. Biotite-garnet geothermometry in the granulite facies: the influence of Ti and Al in biotite. American Mineralogist 70, 272–78.Google Scholar
Ito, K. & Kennedy, G. C. 1971. An experimental study of the basalt-garnet granulite-ecologite transition. In The Structure and Physical Properties of the Earth's Crust (ed. Heacock, J.G.), pp. 303–14. American Geophysical Union Monograph no. 14.Google Scholar
Jan, M. Q. & Howie, R. A. 1981. The mineralogy and geochemistry of the metamorphosed basic and ultrabasic rocks of the Jijal Complex, Kohistan, NW Pakistan. Journal of Petrology 22, 85126.CrossRefGoogle Scholar
Janardhan, A. S., Newton, R. C. & Hansen, E. C. 1982. The transition from amphibolite facies to charnockite in southern Karnataka and northern Tamil Nadu. Contributions to Mineralogy & Petrology 79, 130–49.CrossRefGoogle Scholar
Johansson, L. & Möller, C. 1986. Formation of sapphirine during retrogression of a basic high-pressure granulite, Roan, Western Gneiss Region, Norway. Contributions to Mineralogy & Petrology 94, 2941.CrossRefGoogle Scholar
Kars, H., Jansen, J. B. H., Tobi, A. C. & Poorter, R. P. E. 1980. The metapelitic rocks of the polymetamorphic Precambrian of Rogaland, SW Norway (II). Contributions to Mineralogy & Petrology 75, 235–44.CrossRefGoogle Scholar
Koons, P. O. 1987. Some thermal and mechanical consequences of rapid uplift: an example from the southern Alps, New Zealand. Earth & Planetary Science Letters 86, 307–19.CrossRefGoogle Scholar
Krogh, E. J. 1977. Origin and metamorphism of iron formations and associated rocks, Lofoten-Vesteralen, N. Norway. I. The Vestapolltinal Fe-Mn deposit. Lithos 10, 343–55.CrossRefGoogle Scholar
Krogh, E. J. 1980. Compatible PT conditions for eclogites and surrounding gneisses in the Kristiansund area, West Norway. Contributions to Mineralogy & Petrology 75, 387–93.CrossRefGoogle Scholar
Kuehner, S. M. & Green, D. H. 1987. Uplift history of the East Antarctic Shield: constraints imposed by highpressure experimental studies of Proterozoic mafic dykes. Abstracts, 5th International Symposium on Antarctic Earth Science, Cambridge, p. 84.Google Scholar
Lal, R. K., Ackermand, D., Raith, P., Raase, P. & Seifert, F. 1984. Sapphirine-bearing assemblages from Kiranur, southern India: a study of chemographic relationships in the Na2O-FeO-MgO-Al2O3-SiO2-H2O system. Neues Jahrbuch für Mineralogie Monatshefte 150, 121–52.Google Scholar
Lal, R. K., Ackermand, D. & Upadhyay, H. 1987. PTX relationships deduced from corona textures in sapphirine–spinel–quartz assemblages from Paderu, southern India. Journal of Petrology 28, 1139–68.CrossRefGoogle Scholar
Lamb, R. G., Smalley, P. G. & Field, D. 1986. PT conditions for the Arendal Granulites, southern Norway: Implications for the roles of P, T, and CO2 in deep crustal LILE depletion. Journal of Metamorphic Geology 4, 143–60.CrossRefGoogle Scholar
Lamb, W. M. & Valley, J. M. 1984. Metamorphism of reduced granulites in low-CO2 vapour-free environment. Nature 312, 56–8.CrossRefGoogle Scholar
Lamb, W. M., Valley, J. M. & Brown, P. E. 1987. Post metamorphic CO2-rich fluid inclusions in granulites. Contributions to Mineralogy & Petrology 96, 485–95.CrossRefGoogle Scholar
Lindsley, D. H. 1983. Pyroxene thermometry. American Mineralogist 68, 477–93.Google Scholar
Lonker, S. W. 1981. The PTX relations of the cordieritegarnet-sillimanite-quartz equilibrium. American Journal of Science 281, 1056–90.CrossRefGoogle Scholar
Maboko, M. A. H., McDougall, I. & Zeitler, P. K. In press. Metamorphic PT path of granulites in the Musgrave Ranges, central Australia. In Evolution of Metamorphic Belts.Google Scholar
Martignole, J. 1979. Charnockite genesis and the Proterzoic crust. Precambrian Research 9, 303–10.CrossRefGoogle Scholar
Nantel, S. & Martignole, J. 1978. Geothermobarometric des metapelites de la province de Grenville. Réunion Annuelle des Sciences de la Terre, Orsay 6, 1128.Google Scholar
Newton, R. C. 1966. Some calc-silicate equilibrium relations. American Journal of Science 264, 204–22.CrossRefGoogle Scholar
Newton, R. C. 1972. An experimental investigation of the high-pressure stability limits of magnesian cordierite under wet and dry conditions. Journal of Geology 80, 398420.CrossRefGoogle Scholar
Newton, R. C. & Haselton, H. T. 1981. Thermodynamics of the garnet-plagioclase-Al2SiO5-quartz geobarometer, In Thermodynamics of Minerals and Melts (ed. Newton, R. C., Navrotsky, A.& Wood, B. J.), pp. 131–47. New York: Springer-Verlag.CrossRefGoogle Scholar
Newton, R. C. & Perkins, D. III 1982. Thermodynamic calibration of geobarometers based on the assemblages garnet-plagioclase-orthopyroxene-(clinopyroxene)-quartz. American Mineralogist 67, 203–22.Google Scholar
Newton, R. C., Smith, J. V. & Windley, B. F. 1980. Carbonic metamorphism granulites, and crustal growth. Nature 288, 45–9.CrossRefGoogle Scholar
Newton, R. C. & Wood, B. J. 1979. Thermodynamics of water in cordierite and some petrologic consequences of cordierite as a hydrous phase. Contributions to Mineralogy & Petrology 68, 391405.CrossRefGoogle Scholar
Nixon, P. H., Reedman, A. J. & Burns, L. K. 1973.Sapphirine-bearing granulites from Labwor, Uganda. Mineralogical Magazine 39, 420–28.CrossRefGoogle Scholar
Oliver, G. J. H. 1977. Feldspathic hornblende and garnet granulites and associated anorthosite pegmatites from Doubtful Sound, Fiordland, New Zealand. Contributions to Mineralogy & Petrology 65, 111–21.CrossRefGoogle Scholar
Perchuk, L. L. & Lavrent'eva, I. A. 1983. Experimental investigation of exchange equilibria in the system cordierite-garnet-biotite. In Kinetics and Equilibrium in Mineral Reactions (ed. Saxena, S. K.), pp. 199240. New York: Springer-Verlag.CrossRefGoogle Scholar
Perchuk, L. L., Aranovich, L. Ya., Podlesskii, K. K., Lavrent'eva, V., & Gerasimov, V. Ya., Fedkin, V. V., Kitsul, V. I., Karsakov, L. P. & Berdnikov, N. V. 1985. Precambrian granulites of the Aldan Shield, eastern Siberia, USSR. Journal of Metamorphic Geology 3, 265310.CrossRefGoogle Scholar
Percival, J. A. & McGrath, P. H. 1986. Deep crustal structure and tectonic history of the northern Kapuskasing uplift of Ontario: an integrated petrologicalgeophysical study. Tectonics 5, 5372.CrossRefGoogle Scholar
Perkins, D. III & Chipera, S. J. 1985. Garnet-orthopyroxene-plagioclase-quartz barometry: refinement and application to the English River subprovince and the Minnesota River valley. Contributions to Mineralogy & Petrology 89, 6980.CrossRefGoogle Scholar
Perkins, D. III & Newton, R. C. 1981. Charnockite geobarometers based on coexisting garnet–pyroxeneplagioclase–quartz. Nature 292, 144–46.CrossRefGoogle Scholar
Perkins, D. III Essene, E. J. & Marcotty, L. A. 1982. Thermometry and barometry of some amphibolitegranulite facies rocks from the Otter Lake area, southern Quebec. Canadian Journal of Earth Sciences 19, 1759–74.CrossRefGoogle Scholar
Phillips, G. N. & Wall, V. J. 1981. Evaluation of prograde regional metamorphic conditions: their implications for the heat source and water activity during metamorphism in the Willyama Complex, Broken Hill, Australia. Bulletin de Mineralogie 104, 801–10.CrossRefGoogle Scholar
Powers, R. E. & Bohlen, S. R. 1985. The role of synmetamorphic igneous rocks in the metamorphism and partial melting of metasediments, northwest Adirondacks. Contributions to Mineralogy & Petrology 90, 401–9.CrossRefGoogle Scholar
Raith, M., Raase, P., Ackermand, D. & Lal, R. K. 1983. Regional geothermobarometry in the granulite facies terrane of South India. Transactions of the Royal Society of Edinburgh 73, 221–44.CrossRefGoogle Scholar
Richardson, S. W. 1968. Staurolite stability in part of the system Fe-Al-Si-O-H. Journal of Petrology 9, 467–88.CrossRefGoogle Scholar
Rollinson, H. R., Windley, B. F. & Ramakrishnan, M. 1981. Contrasting high and intermediate pressures of metamorphism in the Archaean Sargur schists of Southern India. Contributions to Mineralogy & Petrology 76, 420–9.CrossRefGoogle Scholar
Rudnick, R. L. & Williams, I. S. 1987. Dating the lower crust by Ion microprobe. Earth & Planetary Science Letters 85, 145–61.CrossRefGoogle Scholar
Sanders, I. S., Daly, J. S. & Davies, G. R. 1987. Late Proterozoic high-pressure granulite facies metamorphism in the north-east Ox inlier, north-west Ireland. Journal of Metamorphic Geology 5, 5168.CrossRefGoogle Scholar
Sandiford, M. A. 1985 a. The metamorphic evolution of granulites at Fyfe Hills: implications for Archaean crustal thickness in Enderby Land, Antarctica. Journal of Metamorphic Geology 3, 155–78.CrossRefGoogle Scholar
Sandiford, M. A. 1985 b.The origin of retrograde shear zones in the Napier Complex: implications for the tectonic evolution of Enderby Land, Antarctica. Journal of Structural Geology 7, 477–88.CrossRefGoogle Scholar
Sandiford, M. A., Neall, F. B. & Powell, R. 1987. Metamorphic evolution of aluminous granulites from Labrador Hills, Uganda. Contributions to Mineralogy and Petrology 95, 217–25.CrossRefGoogle Scholar
Sandiford, K. & Powell, R. 1986 a.Pyroxene exsolution in granulites from Fyfe Hills, Enderby Land, Antarctica evidence for 1000 °C metamorphic temperatures in Archaean continental crust. American Mineralogist 71, 946–54.Google Scholar
Sandiford, M. A. & Powell, R. 1986 b.Deep crustal metamorphism during continental extension: ancient and modern examples. Earth & Planetary Science Letters 79, 151–58.CrossRefGoogle Scholar
Sandiford, M. A., Powell, R., Martin, S. F. & Perera, L. R. K. 1988. Thermal and baric evolution of granulites from Sri Lanka. Journal of Metamorphic Geology 6, 351–64.CrossRefGoogle Scholar
Scharbert, H. G. & Kurat, G. 1974. Distribution of some elements between coexisting ferromagnesian minerals in Moldanubian granulite facies rocks, lower Austria. Tschermaks Mineralogische and Petrographische Mitteihtngen 21, 110–34.CrossRefGoogle Scholar
Schenk, V. 1984. Petrology of felsic granulites, metapelites, metabasites, ultramafics and metacarbonates from southern Calabria (Italy): prograde metamorphism, uplift and cooling of a former lower crust. Journal of Petrology 25, 255–98.CrossRefGoogle Scholar
Schreurs, J. 1984. The amphibolite-granulite facies transition in West Uusimaa, SW Finland. A fluid inclusion study. Journal of Metamorphic Geology 2, 348–57.CrossRefGoogle Scholar
Schreurs, J. & Westra, L. 1986. The thermotectonic evolution of a Proterozoic, low pressure, granulite dome, west Uusimaa, SW Finland. Contributions to Mineralogy & Petrology 93, 236–50.CrossRefGoogle Scholar
Schreyer, W. & Abraham, K. 1978. Symplectitic cordierite-orthopyroxene-garnet assemblages as products of contact metamorphism of pre-existing basement granulites in the Vredefort structure, South Africa, and their relations to pseudotachylite. Contributions to Mineralogy & Petrology 68, 5362.CrossRefGoogle Scholar
Sen, S. K. & Bhattacharya, A. 1984. An orthopyroxenegarnet thermometer and its application to the Madras charnockites. Contributions to Mineralogy & Petrology 88, 6471.CrossRefGoogle Scholar
Sheraton, J. W., Offe, L. O. Tingey, R. J. & Ellis, D. J. 1980.Enderby Land, Antarctica – an unusual Precambrian high grade metamorphic terrain. Journal of the Geological Society of Australia 27, 305–17.CrossRefGoogle Scholar
Sills, J. D. 1984. Granulite facies metamorphism in the Ivrea zone, NW Italy. Schweizerische Mineralogishe Petrographishe Mitteilung 64, 169–91.Google Scholar
Sills, J. D., Ackermand, D., Herd, R. K. & Windley, B. F. 1983. Bulk compositional and mineral paragenesis of sapphirine-bearing rocks along a gabbro-Iherzolite contact at Finero, Ivrea Zone, N. Italy. Journal of Metamorphic Geology 1, 337–52.CrossRefGoogle Scholar
Sills, J. D. & Rollinson, H. R. 1987. The metamorphic evolution of the Lewisian Complex. In Evolution of the Lewisian and Comparable Precambrian High Grade Terrains (ed. Park, R. G.& Tarney, J.), pp. 8192. Geological Society of London Special Publication no. 27.Google Scholar
Sonder, L. J., England, P. C., Wernicke, B. P. & Christiansen, R. L. 1987. A physical model for Cenozoic extension of western North America. In Continental Extensional Tectonics (ed. Coward, M. P., Dewey, J. F. & Hancock, P. L.), pp. 187201. Geological Society of London Special Publication no. 28.Google Scholar
Spear, F. S. & Selverstone, J. 1983. Quantitative PT paths from zoned minerals: theory and tectonic applications. Contributions to Mineralogy & Petrology 83, 384–57.CrossRefGoogle Scholar
Thompson, A. B. 1976. Mineral reactions in pelitic rocks. II. Calculation of some P–T–X(Fe–Mg) phase relations. American Journal of Science 276, 425–54.CrossRefGoogle Scholar
Thompson, A. B. 1983. Fluid-absent metamorphism. Journal of the Geological Society of London 140, 533–47.CrossRefGoogle Scholar
Thompson, A. B. & England, P. C. 1984. Pressure-temperature-time paths of regional metamorphism II. Their inference and interpretation using mineral assemblages in metamorphic rocks. Journal of Petrology 25, 929–55.CrossRefGoogle Scholar
Touret, J. 1986. Fluid inclusions in rocks from the lower continental crust. In The Nature of the Lower Continental Crust (ed. Dawson, J. B., Carswell, D. A., Hall, J. & Wedepohl, K. H.), pp. 161–72. Geological Society of London Special Publication no. 24.Google Scholar
Tracy, R. J. 1978. High-grade metamorphic reactions and partial melting in pelitic schist, west-central Massachusetts. American Journal of Science 278, 150–78.CrossRefGoogle Scholar
Valley, J. W., McLelland, J., Essene, E. J. & Lamb, W. M. 1983. Metamorphic fluids in the deep crust: evidence from the Adirondacks. Nature 301, 226–8.CrossRefGoogle Scholar
Valley, J. W. & O'Neil, J. R. 1984. Fluid heterogeneity during granulite facies metamorphism in the Adirondacks: stable isotope evidence. Contributions to Mineralogy & Petrology 85, 158–73.CrossRefGoogle Scholar
van Reenan, D. D., Barton, J. M. Jr, Roering, C., Smith, C. A. & van Schalkwyk, J. F. 1987. Deep crustal response to continental collision: the Limpopo belt of southern Africa. Geology 15, 1114.2.0.CO;2>CrossRefGoogle Scholar
Vielzeuf, D. & Kornprobst, J. 1984. Crustal splitting and the emplacement of Pyrenean lherzolites and granulites. Earth & Planetary Science Letters 67, 8796.CrossRefGoogle Scholar
Wagner, M. E. & Crawford, M. L. 1975. Polymetamorphism of the Precambrian Baltimore gneiss in southeastern Pennysylvania. American Journal of Science 275, 653–82.CrossRefGoogle Scholar
Warren, B. G., Hensen, B. J. & Ryburn, R. J. 1987. Wollastonite and scapolite in Precambrian calc-silicate granulites from Australia and Antarctica. Journal of Metamorphic Geology 5, 213–23.CrossRefGoogle Scholar
Waters, D. J. 1985. Metamorphic zonation and thermal history of pelitic gneisses from Western Namaqualand, South Africa. Transactions of the Geological Society of South Africa 88, 323–35.Google Scholar
Waters, D. J. 1986. Metamorphic history of sapphirinebearing and related magnesian gneisses from Namaqualand, South Africa. Journal of Petrology 27, 541–65.CrossRefGoogle Scholar
Waters, D. J. & Whales, C. J. 1984. Dehydration melting and the granulite transition in metapelites from southern Namaqualand, S. Africa. Contributions to Mineralogy & Petrology 88, 269–75.CrossRefGoogle Scholar
Weaver, B. L., Tarney, J., Windley, B. F., Sugavanam, E. B. & VenkataRao, V. Rao, V. 1978. Madras granulites: geochemistry and PT conditions of crystallization. In Archaean Geochemistry (ed. Windley, B. F. & Naqvi, S. M.), pp. 177204. Amsterdam: Elsevier.CrossRefGoogle Scholar
Wells, P. R. A. 1979. Chemical and thermal evolution of Archaean sialic crust, southern western Greenland. Journal of Petrology 20, 187226.CrossRefGoogle Scholar
Wells, P. R. A. 1980. Thermal models for the magmatic accretion and subsequent metamorphism of continental crust. Earth & Planetary Science Letters 46, 253–65.CrossRefGoogle Scholar
Wernicke, B. 1985. Uniform-sense normal simple shear of the continental lithosphere. Canadian Journal of Earth Sciences 22, 108–25.CrossRefGoogle Scholar
Windley, B. F., Ackermand, D. & Herd, R. K. 1984. Sapphirine-kornerupine-bearing rocks and crustal uplift history of the Limpopo belt, South Africa. Contributions to Mineralogy & Petrology 86, 342–58.CrossRefGoogle Scholar
Wood, B. J. 1974. The solubility of alumina in orthopyroxene co-existing with garnet. Contributions to Mineralogy & Petrology 46, 115.CrossRefGoogle Scholar
Bertrand, P., Ellis, D. J. & Green, D. H. 1989. Petrologie experimentale: stabilité des assemblages à Sa-Qz et Hy-Sil-Qz dans le systeme FMAS, sousfaible PH2o et fO2. Comptes Rendus de l' Academie des Sciences, Paris (in press).Google Scholar