Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T12:50:26.393Z Has data issue: false hasContentIssue false

Ostracods from freshwater and brackish environments of the Carboniferous of the Midland Valley of Scotland: the early colonization of terrestrial water bodies

Published online by Cambridge University Press:  09 September 2011

C. E. BENNETT*
Affiliation:
Department of Geology, University of Leicester, University Road, Leicester, LE1 7RH, UK.
D. J. SIVETER
Affiliation:
Department of Geology, University of Leicester, University Road, Leicester, LE1 7RH, UK.
S. J. DAVIES
Affiliation:
Department of Geology, University of Leicester, University Road, Leicester, LE1 7RH, UK.
M. WILLIAMS
Affiliation:
Department of Geology, University of Leicester, University Road, Leicester, LE1 7RH, UK.
I. P. WILKINSON
Affiliation:
British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK.
M. BROWNE
Affiliation:
British Geological Survey, Murchison House, West Mains Road, Edinburgh, EH9 3LA, UK.
C. G. MILLER
Affiliation:
Department of Palaeontology, Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
*
Author for correspondence: ceb28@le.ac.uk

Abstract

The Mississippian Strathclyde Group of the Midland Valley of Scotland yields some of the earliest non-marine ostracods. The succession records shallow marine, deltaic, estuarine, lagoonal, lacustrine, fluvial and swamp environments representing a series of staging-posts between fully marine and limnetic settings. Macrofossils and ostracods are assigned to marine, marginal marine, brackish and freshwater environments based on their faunal assemblage patterns. Key brackish to freshwater ostracods are Geisina arcuata, Paraparchites circularis n. sp., Shemonaella ornata n. sp. and Silenites sp. A, associated with the bivalves Anthraconaia, Carbonicola, Cardiopteridium, Curvirimula, Naiadites, the microconchid ‘Spirorbis’, Spinicaudata and fish. Many Platycopina and Paraparchiticopina ostracods are interpreted as euryhaline, which corresponds with their occurrence in marine to coastal plain water bodies, and supports the ‘estuary effect’ hypothesis of non-marine colonization. The success of non-marine colonization by ostracods was dependent on the intrinsic adaptations of ostracod species to lower salinities, such as new reproductive strategies and the timing of extrinsic mechanisms to drive non-marine colonization, such as sea-level change. The genus Carbonita is the oldest and most common freshwater ostracod, and went on to dominate freshwater environments in the Late Palaeozoic.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aladin, N. V. & Potts, W. T. W. 1996. The osmoregulatory capacity of the Ostracoda. Journal of Comparative Physiology B 166, 215–22.CrossRefGoogle Scholar
Algeo, T. J., Berner, R. A., Maynard, J. B. & Scheckler, S. E. 1995. Late Devonian ocean anoxic events and biotic crises: “rooted” in the evolution of vascular land plants? GSA Today 5, 4666.Google Scholar
Anderson, F. W. 1970. Carboniferous ostracoda of the genus Carbonita Strand. Bulletin of the Geological Survey of Great Britain 32, 69121.Google Scholar
Anderson, L. I., Dunlop, J. A., Eagar, R. M. C., Horrocks, C. A. & Wilson, H. M. 1999. Soft-bodied fossils from the roof shales of the Wigan Four Foot coal seam, Westoughton, Lancashire, UK. Geological Magazine 135, 321–29.CrossRefGoogle Scholar
Athersuch, J., Gooday, A. J., Pollard, J. E. & Riley, N. J. 2009. Carboniferous. In Ostracods in British Stratigraphy (eds Whittaker, J. E. & Hart, M. B.), pp. 111–53. London: The Micropalaeontological Society Special Publications.CrossRefGoogle Scholar
Ballèvre, M. & Lardeux, H. 2005. Signification paléoécologique et paléogéographique des bivalves du Carbonifère inférieur du bassin d'Ancenis (Massif armoricain). Paléontologie Systématique 4, 109–21.Google Scholar
Bateman, R. M., Crane, P. R., DiMichele, W. A., Kenrick, P. R., Rowe, N. P. & Speck, T. 1998. Early evolution of land plants: phylogeny, physiology, and ecology of the primary terrestrial radiation. Annual Review of Ecological Systems 29, 263–92.CrossRefGoogle Scholar
Bean, W. 1836. Description and figures of Unio distortus Bean, and Cypris concentrica Bean, from the Upper Sandstone and shale of Scarborough, and Cypris arcuata Bean, from the coal formation of Newcastle. Magazine of Natural History 9, 376–7.Google Scholar
Becker, G., Claus-Dieter, C. & Klaus, L. 1993. Verkieselte Ostracoden vom Thüringer Ökotyp aus dem Grenzbereich Devon/Karbon des Steinbruchs Drewer (Rheinisches Schiefergebirge). Courier Forschungsinstitut Senckenberg 17, 1130.Google Scholar
Bennett, C. E. 2008. A review of the Carboniferous colonisation of non-marine environments by ostracods. Senckenbergiana Lethaea 88, 3746.CrossRefGoogle Scholar
Bennison, G. M. 1960. Lower Carboniferous non-marine lamellibranchs from East Fife, Scotland. Palaeontology 3, 137–52.Google Scholar
Bennison, G. M. 1961. Small Naiadites obesus from the Calciferous Sandstone Series (Lower Carboniferous) of Fife. Palaeontology 4, 300–11.Google Scholar
Benson, R. H. 1955. Ostracodes from the type section of the Fern Glen Formation. Journal of Paleontology 29, 1030–9.Google Scholar
Bless, M. J. M. 1983. Late Devonian and Carboniferous ostracode assemblages and their relationship to the depositional environment. Bulletin de la Société Belge de Géologie 92, 3153.Google Scholar
Bless, M. J. M. & Jordan, H. 1970. Stratigraphical and taxonomical remarks on the ostracode genus Hollinella Coryell. Mededelingen Rijks Geologische Dienst 21, 8191.Google Scholar
Bless, M. J. M. & Jordan, H. 1971. The new genus Copelandella from the Carboniferous – the youngest known beyrichioidean ostracodes. Lethaia 4, 185–90.CrossRefGoogle Scholar
Bless, M. J. M. & Pollard, J. E. 1973. Paleoecology and Ostracode Faunas of Westphalian Ostracode Bands from Limburg, The Netherlands and Lancashire, Great Britain. Mededelingen Rijks Geologische Dienst, Nieuwe Serie 24, 2153.Google Scholar
Bless, M. J. M. & Pollard, J. E. 1975. Quantitative analysis of dimorphism in Carbonita humilis (Jones and Kirkby). American Bulletin of Paleontology 65, 109–27.Google Scholar
Bless, M. J. M., Streel, M. & Becker, G. 1988. Distribution and palaeoenvironment of Devonian to Permian ostracod assemblages in Belgium with reference to some Late Famennian to Permian marine nearshore to “brackish-water” assemblages dated by miospores. Annales de la Société Géologique de Belgique 110, 347–62.Google Scholar
Boardman, E. L. 1989. Coal measures (Namurian and Westphalian) Blackband Iron Formations: fossil bog iron ores. Sedimentology 36, 621–33.CrossRefGoogle Scholar
Boomer, I., Horne, D. J. & Slipper, I. J. 2003. The use of ostracods in palaeoenvironmental studies, or what can you do with an ostracod shell? In Bridging the Gap: Trends in the ostracode biological and geological sciences (eds Park, L. E. & Smith, A. J.), pp. 153–79. The Paleontological Society Papers, vol. 9.Google Scholar
Brand, U. 1994. Continental hydrology and climatology of the Carboniferous Joggins Formation (lower Cumberland Group) at Joggins, Nova Scotia: evidence from the geochemistry of bivalves. Palaeogeography, Palaeoclimatology, Palaeoecology 106, 307–21.CrossRefGoogle Scholar
Brand, P. J. 1996. Taxonomy and distribution of the Upper Carboniferous non-marine bivalve Carbonicola aldamii. Palaeontology 39, 407–11.Google Scholar
Browne, M. A. E., Dean, M. T., Hall, I. H. S., McAdam, A. D., Monro, S. K. & Chisholm, J. I. 1999. A lithostratigraphical framework for the Carboniferous rocks of the Midland Valley of Scotland. BGS research report RR/99/07.Google Scholar
Buatois, L. A., Gingras, M. K., Maceachern, J., Mángano, M. G., Zonneveld, J. P., Pemberton, S. G., Netto, R. G. & Martin, A. 2005. Colonization of brackish-water systems through time: evidence from the trace-fossil record. Palaios 20, 321–47.CrossRefGoogle Scholar
Buatois, L. A., Mángano, M. G., Genise, J. F. & Taylor, T. N. 1998. The ichnological record of the invertebrate invasion of non-marine ecosystems: evolutionary trends in ecospace utilisation, environmental expansion, and behavioral complexity. Palaios 13, 217–40.CrossRefGoogle Scholar
Burchette, T. P. & Riding, R. 1977. Attached vermiform gastropods in Carboniferous marginal marine stromatolites and biostromes. Lethaia 10, 1728.CrossRefGoogle Scholar
Buschmina, L. S. 1968. Early Carboniferous Ostracoda of the Kuznetsk Basin. Moscow: Izdatelstvo nauka, 128 pp.Google Scholar
Buschmina, L. S. & Kononova, L. I. 1981. Microfauna and biostratigraphy of the Devonian-Carboniferous Beds of the south of the western Siberia. Academy of Sciences of the USSR, Siberian Branch, Institute of Geology and Geophysics, Transaction 459, 1121.Google Scholar
Carbonel, P., Colin, J.-P., Danielopol, D., Löffler, H. & Neustrueva, I. 1988. Paleoecology of limnic ostracodes: a review of some major topics. Palaeogeography, Palaeoclimatology, Palaeoecology 62, 413–6.CrossRefGoogle Scholar
Clarkson, E. N. K., Harper, D. A. T. & Hoey, A. N. 1998. Basal Wenlock biofacies from the Girvan district, SW Scotland. Scottish Journal of Geology 34, 6171.CrossRefGoogle Scholar
Coen, M. 1990. Revision of Münster's Carboniferous ostracode species. Courier Forschungsinstitut Senckenberg 123, 265–73.Google Scholar
Coen, M., Michiels, D. & Parisse, E. 1988. Ostracodes dinantiens de l'Ardenne. Mémoires de l'Institut Géologique de l'Université de Louvain 34, 142.Google Scholar
Coryell, H. N. 1928. Some new Pennsylvanian ostracodes. Journal of Paleontology 2, 8794.Google Scholar
Coryell, H. N. & Booth, R. T. 1933. Pennsylvanian Ostracoda: a continuation of the study of the Ostracoda from the Wayland Shale, Graham, Texas. The American Midland Naturalist 14, 258–79.CrossRefGoogle Scholar
Crasquin, S. 1985. Zonation par les ostracodes dans le Mississippian de l'ouest Canadien. Revue de Paléobiologie 4, 4352.Google Scholar
Daeschler, E. B. 2000. An early actinopterygian fish from the Catskill Formation (Late Devonian, Famennian) in Pennsylvania, U.S.A. Proceedings of the Academy of Natural Sciences of Philadelphia 150, 181–92.Google Scholar
Davaud, E. & Girardclos, S. 2001. Recent freshwater ooids and oncoids from western Lake Geneva (Switzerland): indications of a common organically mediated origin. Journal of Sedimentary Research 71, 423–9.CrossRefGoogle Scholar
Delo, D. M. 1930. Some Upper Carboniferous Ostracoda from the shale basin of western Texas. Journal of Paleontology 4, 152–78.Google Scholar
Dewey, C. P. 1983. Ostracode palaeoecology of the Lower Carboniferous of Western Newfoundland. In Applications of Ostracoda (ed. Maddocks, R. F.), pp. 104–15. University of Houston Geosciences.Google Scholar
Dewey, C. P. 1987. Palaeoecology of a hypersaline Carboniferous ostracod fauna. Journal of Micropalaeontology 6, 2933.CrossRefGoogle Scholar
Dewey, C. P. 1988. Lower Carboniferous ostracodes from the Maritimes Basin of eastern Canada: a review. Atlantic Geology 25, 6371.Google Scholar
Dewey, C. 1993. Palaeoecology of ostracodes from a Lower Carboniferous chemosynthetic community. In Ostracoda in the Earth and Life Sciences (eds McKenzie, K. G. & Jones, P. J.), pp. 7789. Proceedings of the 11th International Symposium on Ostracoda, Warrnambool, Victoria, Australia, 1991.Google Scholar
Dewey, C. P. & Fåhraeus, L. E. 1987. Taxonomy of Ostracoda (Crustacea) from Mississippian strata of maritime Canada. Geologica et Palaeontologica 21, 93135.Google Scholar
Dineley, D. L. & Metcalf, S. J. 1999. British Carboniferous fossil fishes sites. In Fossil Fishes of Great Britain (ed. Palmer, D.), pp. 265312. Peterborough, UK: The Geological Conservation Review Series, Joint Nature Conservation Committee.Google Scholar
Eagar, R. M. C. & Belt, E. S. 2003. Succession, palaeoecology, evolution, and speciation of Pennsylvanian non-marine bivalves, Northern Appalacian Basin, USA. Geological Journal 38, 109–43.CrossRefGoogle Scholar
Egorov, V. G. 1950. Ostracodes from the Frasnian of the Russian Platform, I, Kloedenillidae. Moscow-Leningrad: VNIGRI.Google Scholar
Falcon-Lang, H. J. 2005. Small cordaitalean trees in a marine-influenced coastal habitat in the Pennsylvanian Joggins Formation, Nova Scotia. Journal of the Geological Society, London 162, 485500.CrossRefGoogle Scholar
Falcon-Lang, H. J., Benton, M. J., Braddy, S. J. & Davies, S. J. 2006. The Pennsylvanian tropical biome reconstructed from the Joggins Formation of Nova Scotia, Canada. Journal of the Geological Society, London 163, 116.CrossRefGoogle Scholar
Ferguson, L. 1962. The paleoecology of a Lower Carboniferous marine transgression. Journal of Paleontology 36, 1090–107.Google Scholar
Ferguson, L. 1963. The paleoecology of Lingula squamiformis Phillips during a Scottish Mississippian marine transgression. Journal of Paleontology 37, 669–81.Google Scholar
Fielding, C. R., Frank, T. D. & Isbell, J. L. 2008. The late Paleozoic ice age – a review of current understanding and synthesis of global climate patterns. Geological Society of America Special Paper 441, 343–54.Google Scholar
Floyd, J. D. & Williams, M. 2003. A revised correlation of Silurian rocks in the Girvan district, SW Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 93, 383–92.CrossRefGoogle Scholar
Freytet, P., Broutin, J. & Durand, M. 2000. Distribution and palaeoecology of freshwater algae and stromatolites: III, some new forms from the Carboniferous, Permian and Triassic of France and Spain. Annals de Paléontology 86, 195241.CrossRefGoogle Scholar
Freytet, P. & Verrecchia, E. P. 1998. Freshwater organisms that build stromatolites: a synopsis of biocrystallization by prokaryotic and eukaryotic algae. Sedimentology 45, 535–63.CrossRefGoogle Scholar
Friedman, G. M. & Lundin, R. F. 1998. Freshwater ostracodes from Upper Middle Devonian fluvial facies, Catskill Mountains, New York. Journal of Paleontology 72, 485–90.CrossRefGoogle Scholar
Friend, P. F. & Moody-Stuart, M. 1970. Carbonate deposition on the river floodplains of the Wood Bay Formation (Devonian) of Spitzbergen. Geological Magazine 107, 181–95.CrossRefGoogle Scholar
Gramm, M. N. & Ivanov, V. K. 1975. The ostracod Paraparchites minax ivanov sp. nov. from the Permian of the U.S.S.R. and its muscle-scar field. Palaeontology 18, 551–61.Google Scholar
Gray, J. 1988. Evolution of the freshwater ecosystem: the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology 62, 1214.CrossRefGoogle Scholar
Gründel, J. 1961. Zur biostratigraphie und fazies der Gattendorfia-Stufein Mitteldeutschland und besonderer berücksichtigung der Ostracoden. Freiberger Forschungshefte C 111, 53173.Google Scholar
Guirdham, C., Andrews, J. E., Browne, M. A. E. & Dean, M. T. 2003. Stratigraphic and palaeoenvironmental significance of microbial carbonates in the Asbian Sandy Craig Formation of Fife. Scottish Journal of Geology 39, 151–68.CrossRefGoogle Scholar
Harlton, B. H. 1933. Micropaleontology of the Pennsylvanian Johns Valley Shale of the Ouachita Mountains, Oklahoma, and its relationship to the Mississippian Caney Shale. Journal of Paleontology 7, 329.Google Scholar
Hartley, A. J. 1993. A depositional model for the Mid-Westphalian A to late Westphalian B Coal Measures of South Wales. Journal of the Geological Society, London 150, 1121–36.CrossRefGoogle Scholar
Hebert, B. L. & Calder, J. H. 2004. On the discovery of a unique terrestrial faunal assemblage in the classic Pennsylvanian section at Joggins, Nova Scotia. Canadian Journal of Earth Sciences 41, 247–54.CrossRefGoogle Scholar
Heckel, P. H. & Clayton, G. 2006. The Carboniferous System. Use of the new official names for the subsystems, series, and stages. Geological Acta 4, 403–7.Google Scholar
Henningsmoen, G. 1953. Classification of Paleozoic straight-hinged ostracods. Norsk Geologisk Tidsskrift 31, 185288.Google Scholar
Hibbert, S. 1836. On the freshwater limestones of Burdiehouse in the neighbourhood of Edinburgh, belonging to the Carboniferous Group of rocks. With supplementary notes on freshwater limestones. Transactions of the Royal Society of Edinburgh 13, 169241.CrossRefGoogle Scholar
Hmich, D., Schneider, J. W., Saber, H., Voight, S. & El Wartiti, M. 2006. New continental Carboniferous and Permian faunas of Morocco: implications for biostratigraphy, palaeobiogeography and palaeoclimate. In Non-marine Permian Biostratigraphy and Biochronology (eds Lucas, S. G., Cassinis, G. & Schneider, J. W.), pp. 297324. Geological Society of London, Special Publication no. 265.Google Scholar
Horne, D. J. 2003. Key events in the ecological radiation of the Ostracoda. In Bridging the Gap: Trends in the ostracode biological and geological sciences (eds Park, L. E. & Smith, A. J.), pp. 181201. The Paleontological Society Papers, vol. 9.Google Scholar
Jenkins, T. B. H. 1960. Non-marine lamellibranch assemblages from the Coal Measures (Upper Carboniferous) of Pembrokeshire West Wales. Palaeontology 3, 104–23.Google Scholar
Johnson, W. R. 1936. The ostracods of the Missouri series in Nebraska. Nebraska Geological Survey Paper 11, 152.Google Scholar
Jones, P. J. & Chen, P. J. 2000. Carboniferous and Permian Leaioidea (Branchiopoda: Conchostraca) from Australia: taxonomic revision and biostratigraphic implications. Records of the Australian Museum 52, 223–44.CrossRefGoogle Scholar
Jones, T. R. & Kirkby, J. W. 1865. Notes on Palaeozoic bivalved Entomostraca, No. V. Münster's species from the Carboniferous Limestone. The Annals and Magazine of Natural History, London series 3, 15, 404–10.CrossRefGoogle Scholar
Jones, T. R. & Kirkby, J. W. 1867. On the Entomostraca of the Carboniferous rocks of Scotland. Transactions of the Geological Society of Glasgow 2, 213–28.CrossRefGoogle Scholar
Jones, T. R. & Kirkby, J. W. 1879 a. Description of the species of the ostracodous genus Bairdia McCoy, from the Carboniferous strata of Great Britain. Quarterly Journal of the Geological Society, London 35, 565–81.CrossRefGoogle Scholar
Jones, T. R. & Kirkby, J. W. 1879 b. Notes on Palaeozoic bivalved Entomostraca, No. XII. Some Carboniferous species belonging to the genus Carbonia, Jones. The Annals and Magazine of Natural History, London series 5, 4, 2840.CrossRefGoogle Scholar
Jones, T. R. & Kirkby, J. W. 1880. On the zones of marine fossils in the Calciferous Sandstone Series of Fife. Quarterly Journal of the Geological Society, London 36, 559–90.Google Scholar
Jones, T. R. & Kirkby, J. W. 1885. Notes on Palaeozoic bivalved Entomostraca, No. XIX. On some Carboniferous Species of the Ostracodous genus Kirkbya, Jones. The Annals and Magazine of Natural History, London series 5, 15, 174–90.CrossRefGoogle Scholar
Jones, T. R. & Kirkby, J. W. 1886. Notes on Palaeozoic bivalved Entomostraca, No. XXII. On some undescribed species of British Carboniferous Ostracoda. The Annals and Magazine of Natural History, London series 5, 18, 249–69.CrossRefGoogle Scholar
Jones, T. R. & Kirkby, J. W. 1895. Notes on Palaeozoic bivalved Entomostraca, No. XXXII. Some Carboniferous Ostracoda from Yorkshire. The Annals and Magazine of Natural History, London series 6, 16, 452–60.CrossRefGoogle Scholar
Jones, T. R., Kirkby, J. W. & Brady, G. S. 1874. A monograph of the British fossil bivalved Entomostraca from the Carboniferous Formations. Part 1, number 1. The Cypridinidae and their allies. Monograph of the Palaeontographical Society, London 156.Google Scholar
Jones, T. R., Kirkby, J. W. & Brady, G. S. 1884. A monograph of the British fossil bivalved Entomostraca from the Carboniferous Formations. Part 1, number 2. The Cypridinidae and their allies. Monograph of the Palaeontographical Society, London 5799.Google Scholar
Kassi, A. M., Weir, J. A., McManus, J. & Browne, M. A. E. 2004. Lithofacies and sedimentary cycles within the Late Dinantian (late Brigantian) of Fife and East Lothian: is a sequence stratigraphical approach valid? Transactions of the Royal Society of Edinburgh: Earth Sciences 94, 95113.CrossRefGoogle Scholar
Kellett, B. 1936. Carboniferous ostracods. Journal of Paleontology 10, 769–84.Google Scholar
Knox, L. W. & Gordon, E. A. 1999. Ostracodes as indicators of brackish water environments in the Catskill Magnafacies (Devonian) of New York State. Palaeogeography, Palaeoclimatology, Palaeoecology 148, 922.CrossRefGoogle Scholar
Keyser, D. 2005. Histological peculiarities of the noding process in Cyprideis torosa (Jones) (Crustacea, Ostracoda). Hydrobiologia 538, 95106.CrossRefGoogle Scholar
Kummerow, E. H. E. 1939. Die Ostrakoden und phyllopoden des deutschen unterkarbons. Abhandlungen der Preussischen Geologischen Landesanstalt, Berlin. Neue Folge, Heft 194, 4, 1107.Google Scholar
Kummerow, E. 1953. Über oberkarbonische und devonische Ostracoden in Deutschland und in der Volksrepublik Polen. Beiheft zur Zeitschrift Geologie 7, 375.Google Scholar
Latham, M. H. 1932. Scottish Carboniferous Ostracoda. Transactions of the Royal Society of Edinburgh LVII, 351–95.Google Scholar
Lethiers, F. & Damotte, R. 1993. La grande dispersion des espèces d'ostracodes (crustacea) d'eau douce à la fin de l’ère primaire. Comptes rendus de l'Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l'univers, Sciences de la Terre 316, 427–33.Google Scholar
Logan, B. W., Rezak, R. & Ginsburg, R. N. 1964. Classification and environmental significance of algal stromatolites. Journal of Geology 72, 6883.CrossRefGoogle Scholar
Loughlin, N. J. D. & Hillier, R. D. 2010. Early Cambrian Teichnus-dominated ichnofabrics and palaeoenvironmental analysis of the Caerfai Group, Southwest Wales, UK. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 239–51.CrossRefGoogle Scholar
MacNeil, A. J. & Jones, B. 2006. Palustrine deposits on a Late Devonian coastal plain – sedimentary attributes and implications for concepts of carbonate sequence stratigraphy. Journal of Sedimentary Research 76, 292309.CrossRefGoogle Scholar
McCoy, F. 1844. A synopsis of the characters of the Carboniferous Limestone fossils of Ireland. Dublin: Dublin University Press, 207 pp.CrossRefGoogle Scholar
Mii, H.-S., Grossman, E. L. & Yancey, T. E. 1999. Carboniferous isotope stratigraphies of North America: implications for Carboniferous paleoceanography and Mississippian glaciation. Geological Society of America Bulletin 111, 960–73.2.3.CO;2>CrossRefGoogle Scholar
Monaghan, A. A. & Parrish, R. R. 2005. Geochronology of Carboniferous-Permian magmatism in the Midland Valley of Scotland: implications for regional tectonomagmatic evolution and the numerical time scale. Journal of the Geological Society, London 162, 115.Google Scholar
Moore, R. C. 1961. Treatise on Invertebrate Paleontology, Pt. Q, Arthropoda 3. Lawrence, Kansas, USA: Geological Society of America and University of Kansas Press, 442 pp.Google Scholar
Müller, G. W. 1894. Die ostracoden des Golfs von Neapel und der angrenzenden Meeres-abschitte. Fauna und Flora Neapel, Monograph 21, 404.Google Scholar
Münster, G. 1830. On some fossil species of Cypris and Cythere. Jahrbuch fur Mineralogie, Geognosie, Geologie und Petrefaktenkunde 1, 60–7.Google Scholar
Neale, J. 1984. The Ostracoda and uniformitarianism: II. The earlier record: Cretaceous to Cambrian. Proceedings of the Yorkshire Geological Society 44, 443–78.CrossRefGoogle Scholar
Newman, W. A. 2005. Origin of the Ostracoda and their maxillopodan and hexapodan affinities. Hydrobiologia 538, 121.CrossRefGoogle Scholar
Olempska, E. 1993. An ostracod assemblage from late Visean shales of the Cracow area. Acta Palaeontologica Polonica 38, 93107.Google Scholar
Orr, P. J. & Briggs, D. E. G. 1999. Exceptionally preserved conchostracans and other crustaceans from the Upper Carboniferous of Ireland. Special Papers in Palaeontology 62, 168.Google Scholar
Owens, B., McLean, D., Simpson, K. R. M., Shell, P. M. J. & Robinson, R. 2005. Reappraisal of the Mississippian palynostratigraphy of the east Fife coast, Scotland, United Kingdom. Palynology 29, 2347.CrossRefGoogle Scholar
Park, L. E. & Gierlowski-Kordesch, E. H. 2007. Paleozoic lake faunas: establishing aquatic life on land. Palaeogeography, Palaeoclimatology, Palaeoecology 249, 160–79.CrossRefGoogle Scholar
Peryt, T. M. 1983. Classification of coated grains. In Coated Grains (ed. Peryt, T. M.), pp. 36. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Pollard, J. E. 1966. A non-marine ostracod fauna from the coal measures of Durham and Northumberland. Palaeontology 9, 667–97.Google Scholar
Pollard, J. E. 1969. Three ostracod-mussel bands in the Coal Measures (Westphalian) of Northumberland and Durham. Proceedings of the Yorkshire Geological Society 37, 239–76.CrossRefGoogle Scholar
Pollard, J. E. 1985. Coprolites and ostracods from the Dinantian of Foulden, Berwickshire, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 76, 4951.CrossRefGoogle Scholar
Posner, V. M. 1966. On the sexual features of dimorphism in the representatives of the genera Lichvinella and Glyptolichvinella from the Early Carboniferous of Volhynia and Podolia. In Iskopaemye Ostrakody (ed. Gurevitsch, K. Y.), pp. 3449. Kiev.Google Scholar
Přibyl, A. 1960. New information on the Upper Carboniferous freshwater and continental fauna from the Ostrava-Karviná Coal District. Rozpravy Českoslovensé akademie věd 70, 371.Google Scholar
Retallack, G. J. 2001. Soils of the Past: An introduction to paleopedology, 2nd ed. Oxford: Blackwell Science, 404 pp.CrossRefGoogle Scholar
Retrum, J. B. & Kaesler, R. L. 2005. Early Permian Carbonitidae (Ostracoda): ontogeny, affinity, environment and systematics. Journal of Micropalaeontology 24, 179–90.CrossRefGoogle Scholar
Robinson, E. 1978. The Carboniferous. In A Stratigraphical Index of British Ostracoda (eds Bate, R. H. & Robinson, E.), pp. 121–66. Liverpool, UK: Geological Journal Special Issue, No. 8.Google Scholar
Roundy, P. V. 1926. Mississippian formations of San Saba County, Texas. United States Geological Survey Professional Paper 146, 58.Google Scholar
Salas, M. J., Vannier, J. & Williams, M. 2007. Early Ordovician ostracods from Argentina: their bearing on the origin of binodicope and palaeocope clades. Journal of Paleontology 81, 1384–95.CrossRefGoogle Scholar
Sars, G. O. 1866. Oversigt af norges marine ostracoder. Forhandlinger i Videnskabs-Selskabet i Christiania, 130 pp.Google Scholar
Sars, G. O. 1887. Nye bidrag til kundskaben om middelhavets invertebrafauna. Archiv for Mathematik og Naturvidenskab 12, 173324.Google Scholar
Sars, G. O. 1928. An account of the crustacea of Norway with short descriptions and figures of all the specimens, vol. 9, Ostracoda. Bergen: Bergen Museum, 241–77.Google Scholar
Schäfer, P. 2007. Muschelkrebse (Ostracoden) aus permokarbonischen Karbonatbänken im rheinland-pfälzischen Teil des Saar-Nahe-Beckens. In Kohlesümpfe, Seen und Halbwüsten (eds Schindler, T. & Heidtke, U. H. J.). Pollichia.Google Scholar
Schallreuter, R. E. L. 1973. Tvaerenellidae (Ostracoda Palaeocopina) aus Backsteinkalk-Geschieben (Mittelordoviz) Norddeutschlands. Palaeontographica A 144, 55111.Google Scholar
Schultze, H. P., Maples, C. G. & Cunningham, C. R. 1994. The Hamilton Konservat-Lagerstatte: Stephanian terrestrial biota in a marginal-marine setting. Transactions of the Royal Society of Edinburgh: Earth Sciences 84, 443–51.CrossRefGoogle Scholar
Scott, H. W. 1944. Permian and Pennsylvanian fresh-water ostracodes. Journal of Paleontology 18, 141–7.Google Scholar
Scott, H. W. 1959. Type species of Paraparchites Ulrich and Bassler. Journal of Paleontology 33, 670–4.Google Scholar
Searl, A. 1991. Early Dinantian dolomites from East Fife: hydrothermal overprinting of early diagenetic fabrics? Journal of the Geological Society, London 148, 737–47.CrossRefGoogle Scholar
Siveter, D. J. 1984. Habits and modes of life of Silurian ostracodes. Special Papers in Palaeontology 32, 7185.Google Scholar
Siveter, D. J. 2008. Ostracods in the Palaeozoic? Senckenbergiana lethaea 88, 19.CrossRefGoogle Scholar
Siveter, D. J. & Williams, M. 1995. An early Cambrian assignment for the Caerfai Group of South Wales. Journal of the Geological Society, London 152, 221–4.CrossRefGoogle Scholar
Sohn, I. G. 1961. Family Kloedenellidae Ulrich & Bassler, 1908. In Treatise on Invertebrate Paleontology (Q) Arthropoda 3 (ed. Moore, R. C.), pp. 181–7. Lawrence, Kansas, USA: Geological Society of America and University of Kansas Press.Google Scholar
Sohn, I. G. 1969. Revision of some of Girty's invertebrate fossils from the Fayetteville Shale (Mississippian) of Arkansas and Oklahoma – Ostracodes. United States Geological Survey Professional Paper 606−F, 4159.Google Scholar
Sohn, I. G. 1971. A revision of the Paraparchitacea (A) New Late Mississippian ostracode genera and species from Northern Alaska. United States Geological Survey Professional Paper 711−A, 124.Google Scholar
Sohn, I. G. 1972. A revision of the Paraparchitacea (B) Late Palaeozoic ostracode species from the conterminous United States. United States Geological Survey Professional Paper 711−B, 115.Google Scholar
Sohn, I. G. 1977. Muscle scars of Late Palaeozoic freshwater ostracodes from West Virginia. Journal of Research, US Geological Survey 5, 135–41.Google Scholar
Sohn, I. G. 1985. Latest Mississippian (Namurian A) nonmarine ostracodes from West Virginia and Virginia. Journal of Paleontology 59, 446–60.Google Scholar
Stanley, S. M. & Powell, M. G. 2003. Depressed rates of origination and extinction during the late Paleozoic ice age: a new state for the global marine ecosystem. Geology 31, 877–80.CrossRefGoogle Scholar
Stephenson, M. H., Williams, M., Leng, M. J. & Monaghan, A. A. 2004 a. Aquatic plant microfossils of probable non-vascular origin from the Ballagan Formation (Lower Carboniferous), Midland Valley, Scotland. Proceedings of the Yorkshire Geological Society 55, 145–58.CrossRefGoogle Scholar
Stephenson, M. H., Williams, M., Monaghan, A. A., Arkley, S., Smith, R. A., Dean, M., Browne, M. A. E. & Leng, M. J. 2004 b. Palynomorph and ostracod biostratigraphy of the Ballagan Formation, Midland Valley of Scotland, and elucidation of intra-Dinantian unconformities. Proceedings of the Yorkshire Geological Society 55, 131–43.CrossRefGoogle Scholar
Strand, E. 1928. Miscellanea nomenclatoria zoologica et palaeontologica. Archiv für Naturgeschichte 92, 40–1.Google Scholar
Swain, F. M. 1976. Evolutionary development of cypridopsid Ostracoda. Abhandlungen und Verhandlungen des naturwissenschaftlichen Vereins in Hamburg, Neue Folge 18/19 (Supplement), 103–19.Google Scholar
Swartz, F. M. 1936. Revision of the Primitiidae and Beyrichiidae with new Ostracoda from the Lower Devonian of Pennsylvania. Journal of Paleontology 10, 541–86.Google Scholar
Sylvester-Bradley, P. C. 1961. Suborder Metacopina. In Treatise on Invertebrate Paleontology, part Q, Arthropoda 3 (ed. Moore, R. C.), p. Q358. Lawrence, Kansas, USA: Geological Society of America and University of Kansas Press.Google Scholar
Taylor, P. D. & Vinn, O. 2006. Convergent morphology in small spiral worm tubes (‘Spirorbis’) and its palaeoenvironmental implications. Journal of the Geological Society, London 163, 225–8.CrossRefGoogle Scholar
Tibert, N. E., Colin, J.-P., Leckie, R. M., Babinot, J.-F. 2003. Revision of the ostracode genus Fossocytheridea Swain and Brown 1964: Mesozoic ancestral root for the modern eurytopic Cyprideis Jones. Micropaleontology 49, 205–30.CrossRefGoogle Scholar
Tibert, N. E. & Dewey, C. P. 2006. Velatomorpha, a new healdioidean ostracode genus from the early Pennsylvanian Joggins Formation, Nova Scotia, Canada. Micropaleontology 52, 5166.CrossRefGoogle Scholar
Tibert, N. E. & Scott, D. B. 1999. Ostracodes and agglutinated foraminifera as indicators of palaeoenvironmental change in an Early Carboniferous brackish bay, Atlantic Canada. Palaios 14, 246–60.CrossRefGoogle Scholar
Trewin, N. H. & Davidson, R. J. 1996. An Early Devonian lake and its associated biota in the Midland Valley of Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 86, 233–46.CrossRefGoogle Scholar
Turner, B. R., Dewey, C. & Fordham, C. E. 1997. Marine ostracods in the Lower Carboniferous fluviatile Fell Sandstone Group: evidence for base level change and marine flooding of the central graben, Northumberland Basin. Proceedings of the Yorkshire Geological Society 51, 297306.CrossRefGoogle Scholar
Turner, S., Kemp, A. & Warren, A. 1999. First early Carboniferous lungfish (Dipnoi, Ctenodontidae) from central Queensland. Alcheringa 23, 177–83.CrossRefGoogle Scholar
Ulrich, E. O. 1891. New and little known American Paleozoic Ostracoda, Pt. 3, Carboniferous species. Cincinnati Society of Natural History, Journal 13, 200–11.Google Scholar
Ulrich, E. O. & Bassler, R. S. 1906. New American Paleozoic Ostracoda. Notes and descriptions of Upper Carboniferous genera and species. Proceedings of the United States National Museum 30, 149–64.CrossRefGoogle Scholar
Ulrich, E. O. & Bassler, R. S. 1908. New American Paleozoic Ostracoda. Preliminary revision of the Beyrichiidae, with descriptions of new genera. Proceedings of the United States National Museum 35, 277340.CrossRefGoogle Scholar
Van Harten, D. 2000. Variable noding in Cyprideis torosa (Ostracoda, Crustacea): an overview, experimental results and a model from Catastrophe Theory. Hydrobiologia 419, 131–9.CrossRefGoogle Scholar
Vannier, J. & Abe, K. 1995. Size, body plan and respiration in the ostracoda. Palaeontology 38, 843–73.Google Scholar
Vannier, J., Thiery, A. & Racheboeuf, P. R. 2003. Spinicaudatans and ostracods (Crustacea) from the Montceau Lagerstatte (Late Carboniferous, France): morphology and palaeoenvironmental significance. Palaeontology 46, 9991030.CrossRefGoogle Scholar
Vannier, J., Wang, S. Q. & Coen, M. 2001. Leperditicopid arthropods (Ordovician–Late Devonian): functional morphology and ecological range. Journal of Paleontology 75, 7595.2.0.CO;2>CrossRefGoogle Scholar
Wakefield, M. I. 1995. Ostracoda and palaeosalinity fluctuations in the Middle Jurassic Lealt Shale Formation, Inner Hebrides, Scotland. Palaeontology 38, 583617.Google Scholar
Warshauer, S. M. & Smosna, R. 1977. Paleoecologic controls of the ostracode communities in the Tonoloway limestone (Silurian; Pridoli) of the Central Appalachians. In Aspects of Ecology and Zoogeography of Recent and Fossil Ostracoda (eds Löffler, H. & Danielopol, D.), pp. 475–85. The Hague: Junk Publishers.Google Scholar
Webb, J. A. 1979. A reappraisal of the palaeoecology of conchostracans (Crustacea: Branchiopoda). Neues Jahrbuch für Geologie und Palaeontologie, Abhandlungen 158, 259–75.Google Scholar
Whatley, R. 1990 a. The relationship between extrinsic and intrinsic events in the evolution of Mesozoic non-marine Ostracoda. Extinction Events in Earth's History 30, 253–63.CrossRefGoogle Scholar
Whatley, R. 1990 b. Ostracoda and global events. In Ostracoda and Global Events (eds Whatley, R. & Maybury, C.), pp. 324. Cambridge: Chapman and Hall.CrossRefGoogle Scholar
Whatley, R. 1992. The reproductive and dispersal strategies of Cretaceous non-marine Ostracoda: the key to pandemism. In Aspects of Non-Marine Cretaceous Geology (eds Mateer, N. J. & Chen, P. J.), pp. 177–92. Beijing: China Ocean Press.Google Scholar
Whatley, R. C. & Ballent, S. C. 1996. In search of the earliest nonmarine cypridacean ostracods: new discoveries from the Early Mesozoic of western Argentina. GeoResearch Forum 1–2, 111–8.Google Scholar
Whatley, R. C., Siveter, D. J. & Boomer, I. 1993. Arthropoda (Crustacea: Ostracoda). In The Fossil Record 2 (ed. Benton, M. J.), pp. 343–56. London: Chapman and Hall.Google Scholar
Williams, M., Floyd, D. J., Salas, M. J., Siveter, D. J., Stone, P. & Vannier, J. M. C. 2003. Patterns of ostracod migration for the ‘North Atlantic’ region during the Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology 195, 193228.CrossRefGoogle Scholar
Williams, M., Leng, M. L., Stephenson, M. H., Andrews, J. E., Wilkinson, I. P., Siveter, D. J., Horne, D. J. & Vannier, J. M. C. 2006. Evidence that Early Carboniferous ostracods colonised coastal flood plain brackish water environments. Palaeogeography, Palaeoclimatology, Palaeoecology 230, 299318.CrossRefGoogle Scholar
Williams, M., Stephenson, M. H., Wilkinson, I. P., Leng, M. L. & Miller, C. G. 2005. Early Carboniferous (Late Tournaisian–Early Viséan) ostracods from the Ballagan Formation, central Scotland, UK. Journal of Micropalaeontology 24, 7794.CrossRefGoogle Scholar
Wilson, R. B. 1989. A study of the Dinantian marine macrofossils of central Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 80, 91126.CrossRefGoogle Scholar