Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-11T08:54:54.029Z Has data issue: false hasContentIssue false

Palaeoenvironmental significance of Toarcian black shales and event deposits from southern Beaujolais, France

Published online by Cambridge University Press:  07 February 2013

GUILLAUME SUAN*
Affiliation:
Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, D-60438 Frankfurt am Main, Germany Institute of Earth Sciences, University of Lausanne, Géopolis, CH-1015 Lausanne, Switzerland UMR CNRS 5276 LGLTPE, Université Lyon 1, Campus de la Doua, Bâtiment Géode, F-69622 Villeurbanne Cedex, France
LOUIS RULLEAU
Affiliation:
Espace Pierres Folles, 116 chemin du Pinay, F-69380, St Jean des Vignes, France
EMANUELA MATTIOLI
Affiliation:
UMR CNRS 5276 LGLTPE, Université Lyon 1, Campus de la Doua, Bâtiment Géode, F-69622 Villeurbanne Cedex, France
BAPTISTE SUCHÉRAS-MARX
Affiliation:
Department of Earth Sciences, Palaeobiology Programme, Uppsala University, Villavägen 16, Uppsala, SE-75 236, Sweden
BRUNO ROUSSELLE
Affiliation:
Espace Pierres Folles, 116 chemin du Pinay, F-69380, St Jean des Vignes, France
BERNARD PITTET
Affiliation:
UMR CNRS 5276 LGLTPE, Université Lyon 1, Campus de la Doua, Bâtiment Géode, F-69622 Villeurbanne Cedex, France
PEGGY VINCENT
Affiliation:
Staatliches Museum für Naturkunde, Rosenstein 1, D-70191 Stuttgart, Germany
JEREMY E. MARTIN
Affiliation:
School of Earth Sciences, University of Bristol, BS8 1RJ, Bristol, United Kingdom
ALEX LÉNA
Affiliation:
UMR CNRS 5276 LGLTPE, Université Lyon 1, Campus de la Doua, Bâtiment Géode, F-69622 Villeurbanne Cedex, France
JORGE. E. SPANGENBERG
Affiliation:
Institute of Earth Sciences, University of Lausanne, Géopolis, CH-1015 Lausanne, Switzerland
KARL B. FÖLLMI
Affiliation:
Institute of Earth Sciences, University of Lausanne, Géopolis, CH-1015 Lausanne, Switzerland
*
§Author for correspondence: guillaume.suan@univ-lyon1.fr

Abstract

New sedimentological, biostratigraphical and geochemical data recording the Toarcian Oceanic Anoxic Event (T-OAE) are reported from a marginal marine succession in southern Beaujolais, France. The serpentinum and bifrons ammonite zones record black shales with high (1–10 wt%) total organic carbon contents (TOC) and dysoxia-tolerant benthic fauna typical of the ‘Schistes Carton’ facies well documented in contemporaneous nearby basins. The base of the serpentinum ammonite zone, however, differs from coeval strata of most adjacent basinal series in that it presents several massive storm beds particularly enriched in juvenile ammonites and the dysoxia-tolerant, miniaturized gastropod Coelodiscus. This storm-dominated interval records a marked negative 5‰ carbonate and organic carbon isotope excursion being time-equivalent with that recording storm- and mass flow-deposits in sections of the Lusitanian Basin, Portugal, pointing to the existence of a major tempestite/turbidite event over tropical areas during the T-OAE. Although several explanations remain possible at present, we favour climatically induced changes in platform morphology and storm activity as the main drivers of these sedimentological features. In addition, we show that recent weathering, most probably due to infiltration of O2-rich meteoric water, resulted in the preferential removal of 12C-enriched organic carbon, dramatic TOC loss and total destruction of the lamination of the black shale sequence over most of the studied exposure. These latter observations imply that extreme caution should be applied when interpreting the palaeoenvironmental significance of sediments lacking TOC enrichment and lamination from outcrops with limited surface exposures.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aigner, T. 1985. Storm depositional systems: dynamic stratigraphy in modern and ancient shallow-marine sequences. In Lecture Notes in Earth Sciences (eds Friedman, G. M., Neugebauer, H. J. & Seilacher, A.), pp. 174. Springer-Verlag, New York.Google Scholar
Al-Suwaidi, A. H., Angelozzi, G. N., Baudin, F., Damborenea, S. E., Hesselbo, S. P., Jenkyns, H. C., Mancenido, M. O. & Riccardi, A. C. 2010. First record of the Early Toarcian Oceanic Anoxic Event from the Southern Hemisphere, Neuquen Basin, Argentina. Journal of the Geological Society, London 167, 633–6.Google Scholar
Bailey, T. R., Rosenthal, Y., McArthur, J. M., van de Schootbrugge, B. & Thirlwall, M. F. 2003. Paleoceanographic changes of the Late Pliensbachian – Early Toarcian interval: a possible link to the genesis of an Oceanic Anoxic Event. Earth and Planetary Science Letters 212, 307–20.Google Scholar
Bandel, K. & Hemleben, C. 1987. Jurassic heteropods and their modern counterparts (planktonic Gastropoda, Mollusca). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 174, 122.Google Scholar
Baudin, F., Herbin, J.-P. & Vandenbroucke, M. 1990. Mapping and geochemical characterization of Toarcian organic matter in the Mediterranean Tethys. Organic Geochemistry 16, 677–87.Google Scholar
Beerling, D. J. & Brentnall, S. J. 2007. Numerical evaluation of mechanisms driving Early Jurassic changes in global carbon cycling. Geology 35, 247–50.CrossRefGoogle Scholar
Bodin, S., Mattioli, E., Fröhlich, S., Marshall, J. D., Boutbib, L., Lahsini, S. & Redfern, J. 2010. Toarcian carbon isotope shifts and nutrient changes from the Northern margin of Gondwana (High Atlas, Morocco, Jurassic): palaeoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 377–90.Google Scholar
Bown, P. R. 1987. Taxonomy, evolution, and biostratigraphy of the Late Triassic – Early Jurassic calcareous nannofossils. Special Papers in Palaeontology 38, 1118.Google Scholar
Bown, P. R. & Young, J. R. 1998. Techniques. In Calcareous Nannoplankton Biostratigraphy (ed. Bown, P. R.), pp. 1628. British Micropaleontological Press.Google Scholar
Broquet, P. 1980. Les schistes bitumineux. Quelques gisements types. Leur exploitabilité. In Énergies Fossiles: Les Hydrocarbures, pp. 19–46. 266 Congrés géologique international, Section XIV, Paris, 1980, Éditions Technip.Google Scholar
Bucefalo Palliani, R. & Mattioli, E. 1998. High resolution integrated microbiostratigraphy of the Lower Jurassic (late Pliensbachian early Toarcian) of central Italy. Journal of Micropalaeontology 17, 153–72.Google Scholar
Bucefalo Palliani, R., Mattioli, E. & Riding, J. B. 2002. The response of marine phytoplankton and sedimentary organic matter to the early Toarcian (Lower Jurassic) oceanic anoxic event in northern England. Marine Micropaleontology 46, 223–45.Google Scholar
Caswell, B. A., Coe, A. L. & Cohen, A. S. 2009. New range data for marine invertebrate species across the early Toarcian (Early Jurassic) mass extinction. Journal of the Geological Society, London 166, 859–72.CrossRefGoogle Scholar
Cohen, A. S., Coe, A. L. & Kemp, D. B. 2007. The late Palaeocene – Early Eocene and Toarcian (Early Jurassic) carbon isotope excursions: a comparison of their time scales, associated environmental changes, causes and consequences. Journal of the Geological Society, London 164, 1093–108.Google Scholar
Dera, G., Brigaud, B., Monna, F., Laffont, R., Puceat, E., Deconinck, J. F., Pellenard, P., Joachimski, M. M. & Durlet, C. 2011. Climatic ups and downs in a disturbed Jurassic world. Geology 39, 215–18.CrossRefGoogle Scholar
Dera, G., Pellenard, P., Neige, P., Deconinck, J. F., Puceat, E. & Dommergues, J. L. 2009. Distribution of clay minerals in Early Jurassic Peritethyan seas: palaeoclimatic significance inferred from multiproxy comparisons. Palaeogeography, Palaeoclimatology, Palaeoecology 271, 3951.Google Scholar
Duarte, L. V. & Soares, A. F. 1993. Eventos de natureza tempestítica e turbidítica no Toarciano inferior da Bacia Lusitaniana. Cadernos de Geografia 12, 85–9.Google Scholar
Duarte, L. V, Oliveira, L. C. V. & Rodrigues, R. 2007. Carbon isotopes as a sequence stratigraphic tool: examples from the Lower and Middle Toarcian marly limestones of Portugal. Boletín Geológico y Minero 118, 318.Google Scholar
Einsele, G. & Mosebach, R. 1955. Zur Petrographie, Fossilerhaltung und Entstehung der Gesteine des Posidonienschiefers im Schwäbischen Jura. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 101, 319–30.Google Scholar
Elmi, S. & Rulleau, L. 1991. Le Toarcien des carrières Lafarge (Bas-Beaujolais, France): un cadre biostratigraphique de référence pour la région Lyonnaise. Geobios 24, 315–31.Google Scholar
Elmi, S. & Rulleau, L. 1993. Le Jurassique du Beaujolais méridional, bordure orientale du Massif central, France. Geobios Mémoire Spécial 15, 139–55.Google Scholar
Emanuel, K. A. 1999. Thermodynamic control of hurricane intensity. Nature 401, 665–9.Google Scholar
Emanuel, K. A. 2005. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–8.Google Scholar
Emmanuel, L., Renard, M., Cubaynes, R., De Rafelis, M., Hermoso, M., Le Callonnec, L., Le Solleuz, A. & Rey, J. 2006. The “Schistes carton” of Quercy (Tarn, France): a lithological signature of a methane hydrate dissociation event in the Early Toarcian. Implications for correlations between Boreal and Tethyan realms. Bulletin de la Société Géologique de France 177, 237–47.Google Scholar
Etches, S., Clarke, J. & Callomon, J. 2009. Ammonite eggs and ammonitellae from the Kimmeridge Clay Formation (Upper Jurassic) of Dorset, England. Lethaia 42, 204–17.Google Scholar
Etter, W. 1996. Pseudoplanktonic and benthic invertebrates in the Middle Jurassic Opalinum Clay, northern Switzerland. Palaeogeography, Palaeoclimatology, Palaeoecology 126, 325–41.Google Scholar
Fedorov, A. V., Brierley, C. M. & Emanuel, K. 2010. Tropical cyclones and permanent El Nino in the early Pliocene epoch. Nature 463, 1066–71.CrossRefGoogle ScholarPubMed
Fischer, W. 1961. Über die Bildungsbedingungen der Posidonienschiefer in Süddeutschland. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 111, 326–40.Google Scholar
Galbrun, B., Gabilly, J. & Rasplus, L. 1988. Magnetostratigraphy of the Toarcian stratotype at Thouars and Airvault (Deux-Sèvres, France). Earth and Planetary Science Letters 87, 453–62.Google Scholar
Ghadeer, S. G. & Macquaker, J. H. S. 2012. The role of event beds in the preservation of organic carbon in fine-grained sediments: analyses of the sedimentological processes operating during deposition of the Whitby Mudstone Formation (Toarcian, Lower Jurassic) preserved in northeast England. Marine and Petroleum Geology 35, 309–20.Google Scholar
Gómez, J. J. & Goy, A. 2011. Warming-driven mass extinction in the Early Toarcian (Early Jurassic) of northern and central Spain. Correlation with other time-equivalent European sections. Palaeogeography, Palaeoclimatology, Palaeoecology 306, 176–95.Google Scholar
Gómez, J. J., Goy, A. & Canales, M. L. 2008. Seawater temperature and carbon isotope variations in belemnites linked to mass extinction during the Toarcian (Early Jurassic) in Central and Northern Spain. Comparison with other European sections. Palaeogeography, Palaeoclimatology, Palaeoecology 258, 2858.Google Scholar
Guex, J., Morard, A., Bartolini, A. & Morettini, E. 2001. Découverte d'une importante lacune stratigraphique à la limite Domérien-Toarcien: implications paléo-océanographiques. Bulletin de la Société Vaudoise des Sciences Naturelles 345, 277–84.Google Scholar
Hallam, A. 1967. An environmental study of the Upper Domerian and Lower Toarcian in Great Britain. Philosophical Transactions of the Royal Society B 252, 393445.Google Scholar
Hallam, A. & Bradshaw, M. J. 1979. Bituminous shales and oolithic ironstones as indicators of transgressions and regressions. Journal of the Geological Society, London, 136, 157–64.Google Scholar
Harries, P. J. & Little, C. T. S. 1999. The early Toarcian (Early Jurassic) and the Cenomanian–Turonian (Late Cretaceous) mass extinctions: similarities and contrasts. Palaeogeography, Palaeoclimatology, Palaeoecology 154, 3966.Google Scholar
Hermoso, M., Le Callonnec, L., Minoletti, F., Renard, M. & Hesselbo, S. P. 2009. Expression of the Early Toarcian negative carbon-isotope excursion in separated carbonate microfractions (Jurassic, Paris Basin). Earth and Planetary Science Letters 277, 194203.Google Scholar
Hermoso, M., Minoletti, F., Rickaby, R. E. M., Hesselbo, S. P., Baudin, F. & Jenkyns, H. C. 2012. Dynamics of a stepped carbon-isotope excursion: ultra high-resolution study of Early Toarcian environmental change. Earth and Planetary Science Letters 319–320, 4554.Google Scholar
Hesselbo, S. P., Grocke, D. R., Jenkyns, H. C., Bjerrum, C. J., Farrimond, P., Bell, H. S. M. & Green, O. R. 2000. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406, 392–95.Google Scholar
Hesselbo, S. P., Jenkyns, H. C., Duarte, L. V. & Oliveira, L. C. V. 2007. Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth and Planetary Science Letters 253, 455–70.CrossRefGoogle Scholar
Howarth, M. K. 1992 a. The Ammonite family Hildoceratidae in the Lower Jurassic of Britain, Part 1. Monograph of the Palaeontographical Society (London) 145 (586), 1106.Google Scholar
Howarth, M. K. 1992 b. The Ammonite family Hildoceratidae in the Lower Jurassic of Britain, Part 2. Monograph of the Palaeontographical Society (London) 146 (590), 107200.Google Scholar
Ito, M., Ishigaki, A., Nishikawa, T. & Saito, T. 2001. Temporal variation in the wavelength of hummocky cross-stratification: implications for storm intensity through Mesozoic and Cenozoic. Geology 29, 87–9.Google Scholar
Jenkyns, H. C. 1988. The Early Toarcian (Jurassic) Anoxic Event – stratigraphic, sedimentary, and geochemical evidence. American Journal of Science 288, 101–51.Google Scholar
Jenkyns, H. C. 2010. Geochemistry of oceanic anoxic events. Geochemistry Geophysics Geosystems 11, Q03004. doi:10.1029/2009GC002788.Google Scholar
Jenkyns, H. C., Sarti, M., Masetti, D. & Howarth, M. K. 1985. Ammonites and stratigraphy of Lower Jurassic black shales and pelagic limestones from the Belluno Trough, Southern Alps, Italy. Eclogae Geologicae Helvetiae 78, 299311.Google Scholar
Jenkyns, H. C., Grocke, D. R. & Hesselbo, S. P. 2001. Nitrogen isotope evidence for water mass denitrification during the early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography 16, 593603.Google Scholar
Kafousia, N., Karakitsios, V., Jenkyns, H. C. & Mattioli, E. 2011. A global event with a regional character: the Early Toarcian Oceanic Anoxic Event in the Pindos Ocean (northern Peloponnese, Greece). Geological Magazine 148, 619–31.Google Scholar
Kemp, D. B., Coe, A. L., Cohen, A. S. & Schwark, L. 2005. Astronomical pacing of methane release in the Early Jurassic period. Nature 437, 396–99.CrossRefGoogle ScholarPubMed
Kennedy, M. J. & Wagner, T. 2011. Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean. Proceedings of the National Academy of Sciences of the USA. 108, 9776–81.Google Scholar
Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I., Kossin, J. P., Srivastava, A. K. & Sugi, M. 2010. Tropical cyclones and climate change. Nature Geoscience 3, 157–63.Google Scholar
Kullberg, J. C., Oloriz, F., Marques, B., Caetano, P. S. & Rocha, R. B. 2001. Flat-pebble conglomerates: a local marker for Early Jurassic seismicity related to syn-rift tectonics in the Sesimbra area (Lusitanian Basin, Portugal). Sedimentary Geology 139, 4970.Google Scholar
Léonide, P., Floquet, M., Durlet, C., Baudin, F., Pittet, B. & Lécuyer, C. 2012. Drowning of a carbonate platform as a precursor stage of the Early Toarcian global anoxic event (Southern Provence sub-Basin, South-east France). Sedimentology 59, 156–84.Google Scholar
Littke, R., Klussman, U., Krooss, B. & Leythäuser, D. 1991. Quantification of loss of calcite, pyrite and organic matter during weathering of Toarcian black shales and effects on kerogen and bitumen characteristics. Geochimica et Cosmochimica Acta 55, 3369–78.Google Scholar
Mailliot, S., Mattioli, E., Bartolini, A., Baudin, F., Pittet, B. & Guex, J. 2009. Late Pliensbachian – Early Toarcian (Early Jurassic) environmental changes in an epicontinental basin of NW Europe (Causses area, central France): a micropaleontological and geochemical approach. Palaeogeography, Palaeoclimatology, Palaeoecology 273, 346–64.Google Scholar
Marsaglia, K. M. & Klein, G. D. 1983. The paleogeography of Paleozoic and Mesozoic storm depositional systems. Journal of Geology 91, 117–42.Google Scholar
Martin, J. E., Fischer, V., Vincent, P. & Suan, G. 2012. A longirostrine Temnodontosaurus (Ichthyosauria) with comments on Early Jurassic ichthyosaur niche partitioning and disparity. Palaeontology 55, 9951005.Google Scholar
Mattioli, E. & Erba, E. 1999. Synthesis of calcareous nannofossil events in Tethyan Lower and Middle Jurassic successions. Rivista Italiana di Paleontologia e Stratigrafia 105, 343–76.Google Scholar
Mattioli, E., Pittet, B., Petitpierre, L. & Mailliot, S. 2009. Dramatic decrease of pelagic carbonate production by nannoplankton across the Early Toarcian anoxic event (T-OAE). Global and Planetary Change 65, 134–45.Google Scholar
Mattioli, E., Pittet, B., Suan, G. & Mailliot, S. 2008. Calcareous nannoplankton changes across the early Toarcian oceanic anoxic event in the western Tethys. Paleoceanography, 23, PA3208, doi:10.1029/2007PA001435.Google Scholar
McArthur, J. M., Algeo, T. J., van de Schootbrugge, B., Li, Q. & Howarth, R. J. 2008. Basinal restriction, black shales, Re-Os dating, and the Early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography 23, PA4217.Google Scholar
Meyer, K. M. & Kump, L. R. 2008. Oceanic euxinia in Earth history: causes and consequences. Annual Review of Earth and Planetary Sciences 36, 251–88. doi:10.1146/annurev.earth.36.031207.124256.Google Scholar
Monaco, P. 1994. Hummocky cross-stratifications and trace fossils in the Middle Toarcian of some sequences of Umbria-Marche Apennines. Geobios 27, Suppl. 3, 679–88.CrossRefGoogle Scholar
Myrow, P. M. & Southard, J. B. 1996. Tempestite deposition. Journal of Sedimentary Research 66, 875–87.Google Scholar
Pálfy, J. & Smith, P. L. 2000. Synchrony between Early Jurassic extinction, oceanic event, and the Karoo-Ferrar flood basalt volcanism. Geology 28, 747–50.Google Scholar
Petsch, S. T., Berner, R. A. & Eglinton, T. I. 2000. A field study of the chemical weathering of ancient sedimentary organic matter. Organic Geochemistry 31, 475–87.CrossRefGoogle Scholar
Pomar, L. & Kendall, C. 2008. Architecture of carbonate platforms: a response to hydrodynamics and evolving ecology. In Controls on Carbonate Platform and Reef Development (eds Lukasik, J. & (Toni) Simo, J. A.), pp. 187216. SEPM Special Publication no. 89.Google Scholar
Posamentier, H. W., Jervey, M. T. & Vail, P. R. 1988. Eustatic controls on clastic deposition I – conceptual framework. In Sea-level Changes: An Integrated Approach (eds Wilgus, C. K., Posamentier, H. W., Ross, C. A. & Kendall, C. S. C.), pp. 107154. SEPM Special Publication no. 42.Google Scholar
PSUCLIM, 1999. Storm activity in ancient climates. 2. An analysis using climate simulations and sedimentary structures. Journal of Geophysical Research 104 (D22), 27295320.Google Scholar
Quiquerez, A., Allemand, P., Dromart, G. & Garcia, J. P. 2004. Impact of storms on mixed carbonate and siliciclastic shelves: insights from combined diffusive and fluid-flow transport stratigraphic forward model. Basin Research 16, 431–49.Google Scholar
Riegraf, W., Werner, G. & Lörcher, F. 1984. Der Posidonienschiefer: Biostratigraphie Fauna und Fazies des südwestdeutschen Untertoarciums (Lias Epsilon). Stuttgart: Enke.Google Scholar
Röhl, H. J. & Schmid-Röhl, A. 2005. Lower Toarcian (Upper Liassic) black shales of the Central European Epicontinental basin: a sequence stratigraphic case study from the SW German Posidonia Shale. In Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences (ed. Harris, N. B.), pp. 165–89. SEPM Special Publications no. 82.Google Scholar
Röhl, H.-J., Schmid-Röhl, A., Oschmann, W., Frimmel, A. & Schwark, L. 2001. The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 169, 273–99.CrossRefGoogle Scholar
Rulleau, L. 1997. Nouvelles observations sur le Toarcien inférieur de la région Lyonnaise: comparaisons avec les régions voisines. Géologie de la France 2, 1322.Google Scholar
Rulleau, L. 2006. Biostratigraphie et paléontologie du Lias supérieur et du Dogger de la région Lyonnaise (Eds L. Rulleau & la Section Géologie et Paléontologie du Comité d'Entreprise Lafarge Ciments). Dedale Editions, 381 pp.Google Scholar
Sabatino, N., Neri, R., Bellanca, A., Jenkyns, H. C., Baudin, F., Parisi, G. & Masetti, D. 2009. Carbon-isotope records of the Early Jurassic (Toarcian) oceanic anoxic event from the Valdorbia (Umbria-Marche Apennines) and Monte Mangart (Julian Alps) sections: palaeoceanographic and stratigraphic implications. Sedimentology 56, 1307–28.Google Scholar
Schlager, W. 2005. Carbonate Sedimentology and Sequence Stratigraphy. SEPM, Concepts in Sedimentology and Paleontology vol. 8, 200 pp.Google Scholar
Suan, G., Mattioli, E., Pittet, B., Lécuyer, C., Suchéras-Marx, B., Duarte, L. V., Philippe, M., Reggiani, L. & Martineau, F. 2010. Secular environmental precursors to Early Toarcian (Jurassic) extreme climate changes. Earth and Planetary Science Letters 290, 448–58.Google Scholar
Suan, G., Mattioli, E., Pittet, B., Mailliot, S. & Lécuyer, C. 2008 a. Evidence for major environmental perturbation prior to and during the Toarcian (Early Jurassic) oceanic anoxic event from the Lusitanian Basin, Portugal. Paleoceanography 23. doi 10.1029/2007PA001459.Google Scholar
Suan, G., Pittet, B., Bour, I., Mattioli, E., Duarte, L. V. & Mailliot, S. 2008 b. Duration of the Early Toarcian carbon isotope excursion deduced from spectral analysis: consequence for its possible causes. Earth and Planetary Science Letters 267, 666–79.Google Scholar
Suan, G., Nikitenko, B. L., Rogov, M. A., Baudin, F., Spangenberg, J. E., Knyazev, V. G., Glinskikh, L. A., Goryacheva, A. A., Adatte, T., Riding, J. B., Föllmi, K. B., Pittet, B., Mattioli, E. & Lécuyer, C. 2011. Polar record of Early Jurassic massive carbon injection. Earth and Planetary Science Letters 312, 102–13.Google Scholar
Svensen, H., Planke, S., Chevallier, L., Malthe-Sorenssen, A., Corfu, F. & Jamtveit, B. 2007. Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth and Planetary Science Letters 256, 554–66.Google Scholar
Trabucho Alexandre, J., Tuenter, E., Henstra, G. A., van der Zwan, K. J., van de Wal, R. S. W., Dijkstra, H. A. & de Boer, P. L. 2010. The mid-Cretaceous North Atlantic nutrient trap: black shales and OAEs. Paleoceanography, 25, PA4201. doi: 10.1029/2010PA001925.Google Scholar
van de Schootbrugge, B., McArthur, J. M., Bailey, T. R., Rosenthal, Y., Wright, J. D. & Miller, K. G. 2005. Toarcian oceanic anoxic event: an assessment of global causes using belemnite C isotope records. Paleoceanography 20, PA3008, doi: 10.1029/2004PA001102.Google Scholar
Walker, R. G. & Plint, A. G. 1992. Wave- and storm-dominated shallow marine systems. In Facies Models: Response to Sea Level Change (eds Walker, R. G. & James, N. P.), pp. 219–38. Geological Association of Canada.Google Scholar
Weitschat, W. 1973. Stratigraphie und Ammoniten des Höheren Untertoarcium (oberer Lias epsilon) von NW-Deutschland. Geoligisches Jahrbuch, Reihe A, Hannover, 8, 381.Google Scholar
Wignall, P. B., Newton, R. J. & Little, C. T. S. 2005. The timing of paleoenvironmental change and cause- and -effect relationships during the Early Jurassic mass extinction in Europe. American Journal of Science, 305, 1014–32.Google Scholar
Supplementary material: File

SUAN Supplementary Material

Appendix

Download SUAN Supplementary Material(File)
File 7.6 MB