Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-19T03:38:22.912Z Has data issue: false hasContentIssue false

The palaeomagnetic evolution of continental red beds

Published online by Cambridge University Press:  01 May 2009

P. Turner
Affiliation:
Department of Geological Sciences, University of Aston in Birmingham, Gosta Green Birmingham B4 7ET

Summary

The palaeomagnetism of continental red beds is considered in the light of evidence concerning the diagenetic origin of various textural phases of hematite. The relative roles of pigmentary hematite and specularite as magnetization carriers is discussed and it is concluded that all magnetizations are post-depositional: the magnetization of continental red beds is therefore of diagenetic origin.

Three types of non-viscous magnetization, A, B and C, are recognized in continental red beds. Type-A magnetizations retain some features of the original magnetization and are most closely coincident with the depositional age of the rocks. Type-B are composite magnetizations acquired over a long period (more than 108 yr) of time and after substantial changes in the ambient geomagnetic field. Type-C magnetizations bear no relationship to the depositional age of the rocks and represent the ultimate end-product of the diagenetic processes which affect continental red beds. Thus, these magnetizations represent stages in the diagenetic evolution of red beds. The rate of diagenetic evolution, and hence of the modification of the magnetization, is variable and depends on a variety of local geological variables.

The study enables some assessment of the reliability of palaeomagnetic data from red beds. Type-A magnetizations, although of diagenetic origin, are considered to be palaeomagnetically reliable, but only within certain limits. Red beds with Type-B and Type-C magnetizations are not considered to be generally suitable for palaeomagnetic study. Palaeomagnetic studies are, however, considered to have great potential value for dating specific diagenetic processes in continental red beds.

Type
Articles
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Khafaji, S. A. & Vincenz, S. A. 1971. Magnetization of the Cambrian Lammotte Formation in Missouri. Geophys. J. R. astr. Soc. 24, 175205.CrossRefGoogle Scholar
Baag, Czang-Go & Helsley, C. E. 1974. Evidence for penecontemporaneous magnetization of the Moenkopi Formation. J. Geophys. Res. 79, 3308–20.CrossRefGoogle Scholar
Berner, R. A. 1969. Goethite stability and the origin of red beds. Geochim. cosmochim. Acta 33, 267–73.CrossRefGoogle Scholar
Bingham, D. K. & Evans, M. E. 1976. Palaeomagnetism of the Great Slave Supergroup, Northwest Territories, Canada: The Stark Formation. Can. J. Earth Sci. 13, 563–78.CrossRefGoogle Scholar
Chamalaun, F. H. 1964. Origin of the secondary magnetization of the Old Red Sandstone of the Anglo-Welsh curette. J. Geophys. Res. 69, 4327–37.CrossRefGoogle Scholar
Collinson, D. W. 1965. Origin of remanent magnetization and initial susceptibility of certain red sandstones. Geophys. J. R. astr. Soc. 9, 203–17.CrossRefGoogle Scholar
Collinson, D. W. 1974. The role of pigment and specularite in the remanent magnetism of red sandstones. Geophys. J. R. astr. Soc. 38, 253–64.CrossRefGoogle Scholar
Collinson, D. W. & Runcorn, S. K. 1960. Polar wandering and continental drift: Evidence from palaeomagnetic observations in the United States. Bull. geol. Soc. Am. 71, 915–58.CrossRefGoogle Scholar
Creer, K. M. 1957. The natural remanent magnetization of certain stable rocks from Great Britain. Phil. Trans. R. Soc. Lond. A 250, 111–29.Google Scholar
Creer, K. M. 1961. Superparamagnetism in red sandstones. Geophys. J. R. Astr. Soc. 5, 1628.Google Scholar
Creer, K. M. & Embleton, B. J. J. 1967. Devonian palaeomagnetic pole for Europe and N. America. Nature, Lond. 214, 42–3.CrossRefGoogle Scholar
Dunlop, D. J. 1971. Magnetic properties of fine particle hematite. Ann. Geophys. 27, 269–93.Google Scholar
Eaton, J. A. & Morrish, A. H. 1969. Magnetic domains in hematite at and above the Morin transition. J. Appl. Phys. 40, 3180–5.CrossRefGoogle Scholar
Embleton, B. J. J. 1968. Laboratory stability tests applied to Devonian lavas from Scotland. Geophys. J. R. astr. Soc. 16, 239–51.CrossRefGoogle Scholar
Friend, P. F. 1966. Clay fractions and colours of some Devonian red beds in the Catskill Mountains, U.S.A. Q. J. geol. Soc. Lond. 122, 273–92.CrossRefGoogle Scholar
Custard, B. 1967. Ther ferromagnetic domain structure in hematite. Proc. R. Soc. Lond. A 297, 269–74.Google Scholar
Haigh, G. 1957. Observations on the magnetic transition in hematite at -15 °C. Phil. Mag. 2, 877–90.CrossRefGoogle Scholar
Hedley, I. G. 1968. Chemical remanent magnetization of the FeO OH, Fe2O3 system. Phys. Earth. Planet. Ints. 1, 103–21.CrossRefGoogle Scholar
Helsley, C. E. & Steiner, M. 1974. Magnetic reversal stratigraphy and secular variation in the Lower Triassic Moenkopii Formation of Western Colorado. Bull. geol. Soc. Am. 85, 457–64.2.0.CO;2>CrossRefGoogle Scholar
Irving, E. 1964. Paleomagnetism and Its Applications to Geological and Geophysical Problems. New York: John Wiley.Google Scholar
Irving, E. & Opdyke, N. D. 1964. The palaeomagnetism of the Bloomsburg red beds and its possible application to the tectonic history of the Appalachians. Geophys. J. R. astr. Soc. 9, 153–67.CrossRefGoogle Scholar
Johnson, A. H. 1976. Paleomagnetism of the Jurassic Navajo Sandstone from Southwestern Utah. Geophys. J. R. Astr. Soc. 44, 161–75CrossRefGoogle Scholar
Krynine, P. D. 1949. The origin of red beds. Trans. N.Y. Acad. Sci. (2) 11, 60–8.CrossRefGoogle Scholar
Larson, E. E. & Walker, T. R. 1975. Development of chemical remanent magnetization during early stages of red bed formation in Late Cenozoic sediments, Baja California. Bull. geol. Soc. Am. 86, 639–50.2.0.CO;2>CrossRefGoogle Scholar
Lomax, K. & Briden, J. C. 1977. Palaeomagnetic studies of the Longmyndian and other British late Precambrian/early Paleozoic rocks, and their regional tectonic implications. J. geol. Soc. Lond. 133, 521.CrossRefGoogle Scholar
McMurray, E. W. 1970. Palaeomagnetic results from the Scottish lavas of Lower Devonian age. In Palaeogeophysics (ed. Runcorn, S. K.), pp. 253–62. London: Academic Press.Google Scholar
Parry, J. H. 1957. The problem of reversed magnetizations and its study by magnetic methods. Adv. Phys. 6, 299305.CrossRefGoogle Scholar
Picard, M. D. 1964. Paleomagnetic correlation of units within Chugwater (Triassic) Formation, west-central Wyoming. Bull. Am. Ass. Petrol. Geol. 48, 269291.Google Scholar
Roy, J. L. & Park, J. K. 1972. Red beds: DRM or CRM? Earth Planet. Sci. Lett. 17, 211–16.Google Scholar
Roy, J. L. & Park, J. K. 1974. The magnetization process of certain red beds: Vector analysis of chemical and thermal results. Can. J. Earth Sci, 11, 437–71.CrossRefGoogle Scholar
Sallomy, J. T. & Piper, J. D. A. 1973. Palaeomagnetic studies in the British Caledonides. IV. Lower Devonian lavas of the Strathmore region, Scotland. Geophys. J. R. astr. Soc. 34, 4768.CrossRefGoogle Scholar
Smith, R. W. & Fuller, M. 1967. Alpha-hematite: stable remanence and memory. Science, N. Y. 156, 1130–3.CrossRefGoogle ScholarPubMed
Stewart, A. D. & Irving, E. 1974. Palaeomagnetism of Precambrian sedimentary rocks from N.W. Scotland and the apparent polar wandering path of Laurentia. Geophys. J. R. astr. Soc. 37, 5172.CrossRefGoogle Scholar
Storetvedt, K. M., Halvorsen, E. & Gjellestad, G. 1968. Thermal analysis of the natural remanent magnetism of some upper Silurian red sandstones in the Oslo region. Tectonophysics 5, 413–26.CrossRefGoogle Scholar
Stubbs, P. M. 1958. Continental drift and polar wandering; a palaeomagnetic study of the British and European Trias and the British Old Red Sandstone. Unpubl. thesis, University of London.Google Scholar
Tarling, D. H., Donovan, R. N., Abou-Deeb, J. M. & El-Batrouk, S. I. 1976. Palaeomagnetic dating of hematite genesis in Orcadian Basin sediments. Scott. J. Geol. 12, 125–34.CrossRefGoogle Scholar
Thorning, L. 1974. Palaeomagnetic results from Lower Devonian rocks of the Cheviot Hills, Northern England. Geophys. J. R. Astr. Soc. 36, 487–96.CrossRefGoogle Scholar
Turner, P. 1974. Origin of red beds in the Ringerike Group (Silurian) of Norway. Sediment. Geol. 12, 215235.CrossRefGoogle Scholar
Turner, P. 1977. Remanent magnetism of middle Old Red Sandstone lacustrine and fluviatile sediments from the Orcadian Basin, Scotland. J. geol. Soc. Lond. 133, 3750.CrossRefGoogle Scholar
Turner, P. & Archer, R. 1975. Magnetization history of Lower Old Red Sandstones from the Gamrie Outlier, Scotland. Earth Planet. Sci. Lett. 27, 240–50.CrossRefGoogle Scholar
Turner, P. & Archer, R. 1977. The role of biotite in the diagenesis of Devonian red beds from northern Scotland. Sed. Geol. 19, 241–51.CrossRefGoogle Scholar
Turner, P. & Ixer, R. A. 1977. Diagenetic development of unstable and stable magnetization in the St Bees Sandstone (Triassic) of Northern England. Earth Planet. Sci. Lett. 34, 113–24.CrossRefGoogle Scholar
Van Der Voo, R. & Grubbs, K. L. 1977. Paleomagnetism of the Triassic Chugwater red beds revisited (Wyoming, U.S.A.). Tectonophysics. 41, T27T33.CrossRefGoogle Scholar
Van Houten, F. B. 1964. Origin of red beds – some unsolved problems. In Problems in Palaeoclimatology (ed. Nairn, A. E. M.), pp. 647–61. New York: John Wiley.Google Scholar
Van Houten, F. B. 1968. Iron oxides in red beds. Bull. geol. Soc. Am. 79, 399416.CrossRefGoogle Scholar
Van Houten, F. B. 1972. Iron and clay in tropical savanna alluvium, northern Colombia: A contribution to the origin of red beds. Bull. geol. Soc. Am. 83, 2761–72.CrossRefGoogle Scholar
Waage, H. L. & Storetvedt, K. M. 1973. The Devonian geomagnetic axis relative to the Orcadian Basin, N. Scotland. Z. Geophysik. 39, 931–51.Google Scholar
Walker, T. R. 1974. Formation of red beds in moist tropical climates: A hypothesis. Bull. geol. Soc. Am. 85, 633–8.2.0.CO;2>CrossRefGoogle Scholar
Walker, T. R. 1976. Diagenetic origin of continental red beds. In The Continental Permian in Central, West and South Europe. (ed. Falke, H.), pp. 240–82. Dordrecht, Holland: D. Reidel.CrossRefGoogle Scholar