Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T19:46:07.631Z Has data issue: false hasContentIssue false

Pervasive near-surface stratal disruption in an accretionary prism setting: Kaczawa Complex, SW Poland

Published online by Cambridge University Press:  25 May 2016

JOANNA KOSTYLEW*
Affiliation:
Institute of Geological Sciences, University of Wrocław, Cybulskiego 30, 50–205 Wrocław, Poland
JAN A. ZALASIEWICZ
Affiliation:
Department of Geology, University of Leicester, University Road, Leicester, LE1 7RH, UK
RYSZARD KRYZA
Affiliation:
Institute of Geological Sciences, University of Wrocław, Cybulskiego 30, 50–205 Wrocław, Poland
*
Author for correspondence: joanna.kostylew@uwr.edu.pl

Abstract

The tectonized and metamorphosed mudrocks within the Variscan accretionary prism of the Kaczawa Mountains in SW Poland comprise sedimentary mélanges together with more coherent stratigraphic units; some represent large olistoliths deposited in a submarine trench. We infer a trend of progressive near-surface stratal disruption in mud-dominated deposits due to dewatering that forms a continuum with subduction-related tectonic structures imposed on unconsolidated sediment during deeper burial. The assemblage of characters suggests that an accretionary prism environment can influence, and leave characteristic traces of, the total burial history of a trench succession.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aleksandrowski, P., Kryza, R., Mazur, S. & Żaba, J. 1997. Kinematic data on major Variscan strike-slip faults and shear zones in the Polish Sudetes, northeast Bohemian Massif. Geological Magazine 134, 727–39.Google Scholar
Aleksandrowski, P. & Mazur, S. 2002. Collage tectonics in the northeasternmost part of the Variscan Belt: the Sudetes, Bohemian Massif. In Palaeozoic Amalgamation of Central Europe (eds Winchester, J. A., Pharaoh, T. C. & Verniers, J.), pp. 237–77. Geological Society of London, Special Publications no. 201.Google Scholar
Allen, J. R. L. 1986. Earthquake magnitude-frequency, epicentral distance, and soft-sediment deformation in sedimentary basins. Sedimentary Geology 46, 6775.Google Scholar
Baranowski, Z., Haydukiewicz, A., Kryza, R., Lorenc, S., Muszyński, A., Solecki, A. & Urbanek, Z. 1990. Outline of the geology of the Góry Kaczawskie (Sudetes, Poland). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 179, 223–57.Google Scholar
Baranowski, Z., Haydukiewicz, A., Kryza, R., Lorenc, S., Muszyński, A. & Urbanek, Z. 1987. Rozwój struktury wschodniej części Gór Kaczawskich na podstawie dotychczasowego rozpoznania stratygrafii, warunków sedymentacji i wulkanizmu. Przewodnik 58 Zjazdu Polskiego Towarzystwa Geologicznego, 1719 Września 1987, Wałbrzych.Google Scholar
Baranowski, Z., Haydukiewicz, A., Kryza, R., Lorenc, S., Muszyński, A. & Urbanek, Z. 1998. The lithology and origin of the metasedimentary and metavolcanic rocks of the Chełmiec Unit (Góry Kaczawskie, Sudetes). Geologia Sudetica 31, 3359.Google Scholar
Barnes, P. M., Nicol, A. & Harrison, T. 2002. Late Cenozoic evolution and earthquake potential of an active listric thrust complex above the Hikurangi subduction zone, New Zealand. GSA Bulletin 114, 1379–405.Google Scholar
Bettelli, G. & Vannucchi, P. 2003. Structural style of the offscraped Ligurian oceanic sequences of the Northern Apennines: new hypothesis concerning the development of mélange block-in-matrix fabric. Journal of Structural Geology 25, 371–88.Google Scholar
Brothers, R. J., Kemp, A. E. S. & Maltman, A. J. 1996. Mechanical development of vein structures due to the passage of earthquake waves through poorly-consolidated sediments. Tectonophysics 260, 227–44.Google Scholar
Buerk, D., Klaucke, I., Sahling, H. & Weinrebe, W. 2010. Morpho-acoustic variability of cold seeps on the continental slope offshore Nicaragua: Result of fluid flow interaction with sedimentary processes. Marine Geology 275, 5365.Google Scholar
Byrne, T., Maltman, A., Stephenson, E., Soh, W. & Knipe, R. 1993. Deformation structures and fluid flow in the toe region of the Nankai accretionary prism. In Proceedings of the Ocean Drilling Program (eds Hill, I. A., Taira, A., Firth, J. V., et al.), pp. 83101. College Station, Texas. Scientific Results 131.Google Scholar
Cave, R. 1979. Sedimentary environments of the basinal Llandovery of mid-Wales. In The Caledonides of the British Isles (eds Harris, A. L., Holland, C. E. & Leake, B. E.), pp. 517–26. Geological Society of London, Special Publication no. 8.Google Scholar
Clift, P. & Vannucchi, P. 2004. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Review of Geophysics 42, RG2001: 131.Google Scholar
Collins, A. S., Kryza, R. & Zalasiewicz, J. 2000. Macrofabric fingerprints of Late Devonian–Early Carboniferous subduction in the Polish Variscides, the Kaczawa complex, Sudetes. Journal of the Geological Society of London 157, 283–8.Google Scholar
Cowan, D. S. 1985. Structural styles in Mesozoic and Cenozoic mélanges in the western Cordillera of North America. Geological Society of America Bulletin 96, 451–62.Google Scholar
Davies, J. R., Fletcher, C. J. N., Waters, R. A., Wilson, D., Woodhall, D. G. & Zalasiewicz, J. 1997. Geology of the country around Llanilar and Rhayader: Memoir for 1:50,000 geological sheets 178 and 179 (England and Wales). British Geological Survey, London, xii + 267 pp.Google Scholar
Davies, J. R., Waters, R. A., Williams, M., Wilson, D., Schofield, D. I. & Zalasiewicz, J. A. 2009. Sedimentary and faunal events revealed by a revised correlation of post-glacial Hirnantian (Late Ordovician) strata in the Welsh Basin, UK. Geological Journal 44, 322–40.Google Scholar
Furnes, H., Kryza, R., Muszyński, A., Pin, C. & Garmann, L. B. 1994. Geochemical vidence for progressive, rift-related early paleozoic volcanism in the Western Sudetes. Journal of the Geological Society, London 151, 91109.Google Scholar
Grando, G. & McClay, K. 2007. Morphotectonics domains and structural styles in the Makran accretionary prism, offshore Iran. Sedimentary Geology 196, 157–79.Google Scholar
Hashimoto, Y., Nakaya, T., Ito, M. & Kimura, G. 2006. Tectonolithification of sandstone prior to the onset of seismogenic subduction zone: Evidence from tectonic mélange of the Shimanto Belt, Japan. Geochemistry, Geophysics, Geosystems 7, Q06013.Google Scholar
Haydukiewicz, A. & Urbanek, Z. 1987. Melanż z Rzeszówka (dolina potoku Kamiennik). Przewodnik 58 Zjazdu Polskiego Towarzystwa Geologicznego, Wałbrzych, 17–19 Września 1987, pp. 112–4.Google Scholar
Kleist, J. R. 1974. Deformation by soft-sediment extension in the coastal belt, Franciscan Complex. Geology 2, 501–4.Google Scholar
Kostylew, J. 2005. Mélange and metamudstones from Stanisławów (Kaczawa Complex, Sudetes): selected petrological aspects. Mineralogical Society of Poland – Special Papers 26, 193–6.Google Scholar
Kostylew, J. 2008. Very low-grade metamorphism in the Variscan accretionary prism of the Kaczawa Complex (Sudetes, SW Poland): new data from illite ‘crystallinity’ index. Mineralogical Society of Poland – Special Papers 32, 98.Google Scholar
Kroner, U. & Romer, R. L. 2013. Two plates – many subduction zones: The Variscan orogeny reconsidered. Gondwana Research 24, 298329.Google Scholar
Kryza, R. & Muszyński, A. 1992. Pre-Variscan volcanic-sedimentary succession of the central southern Gory Kaczawskie, SW Poland: outline geology. Annales Societatis Geologorum Poloniae 62, 117–40.Google Scholar
Kryza, R., Muszyński, A. & Vielzeuf, D. 1990. Glaucophane-bearing assemblage overprinted by greenschist-facies metamorphism in the Variscan Kaczawa Complex, Sudetes, Poland. Journal of Metamorphic Geology 8, 345–55.Google Scholar
Kryza, R., Willner, A., Massonne, H.-J., Muszyński, A. & Schertl, H.-P. 2011. Blueschist-facies metamorphism in the Kaczawa Mountains (Sudetes, SW Poland) of the Central-European Variscides: P-T constraints by a jadeite-bearing metatrachyte. Mineralogical Magazine 75, 241–63.Google Scholar
Kryza, R. & Zalasiewicz, J. 2008. Records of Precambrian–Early Palaeozoic volcanic and sedimentary processes in the Central European Variscides: A review of SHRIMP zircon data from the Kaczawa succession (Sudetes, SW Poland). Tectonophysics 461, 6071.Google Scholar
Kryza, R., Zalasiewicz, J. A., Charnley, N., Milodowski, A. E., Kostylew, J. & Tyszka, R. 2004. In situ growth of monazite in anchizonal to epizonal mudrocks; first record from the Variscan accretionary prism of the Kaczawa Mountains, west Sudetes, SW Poland. Geologia Sudetica 36, 3951.Google Scholar
Kryza, R., Zalasiewicz, J., Mazur, S., Aleksandrowski, P., Sergeev, S. & Larionov, A. 2007. Precambrian crustal contribution to the Variscan accretionary prism of the Kaczawa Mountains (Sudetes, SW Poland): evidence from SHRIMP dating of detrital zircons. International Journal of Earth Sciences 96, 1153–62.Google Scholar
Levin, L. A. 2003. Oxygen minimum zone benthos: Adaptation and community response to hypoxia. Oceanography and Marine Biology: An Annual Review 41, 145.Google Scholar
Linnemann, U., Nance, R. D., Kraft, P. & Zulauf, G. (eds) 2007. The Evolution of the Rheic Ocean: From Avalonian-Cadomian Active Margin to Alleghenian–Variscan Collision. Geological Society of America, Boulder, Special Paper no. 423, 630 pp.Google Scholar
Martill, D. M. 1993. Soupy substrates: A medium for the exceptional preservation of ichthyosaurs in the Posidonia Shale (Lower Jurassic) of Germany. Kaupia: Darmstäder Beiträge zur Naturgeschichte 2, 7797.Google Scholar
Mazur, S., Aleksandrowski, P., Kryza, R. & Oberc-Dziedzic, T. 2006. The Variscan Orogen in Poland. Geological Quarterly 50, 89118.Google Scholar
Moore, J. C., Cowan, D. S. & Karig, D. E. 1985. Structural styles and deformation fabrics of accretionary complexes. Geology 13, 77–9.Google Scholar
Moore, J. C., Rowe, C. & Meneghini, F. 2007. How can accretionary prisms elucidate seismogenesis in subduction zones? In: The Seismogenic Zone of Subduction Thrust Faults (eds Dixon, T. H. & Moore, J. C.), pp. 288315. New York: Columbia University Press.Google Scholar
Nance, R. D., Gutierrez-Alonso, G., Keppie, J. D., Linnemann, U., Murphy, J. B., Quesada, C., Strachan, R. A. & Woodcock, N. H. 2010. Evolution of the Rheic Ocean. Gondwana Research 17, 194222.Google Scholar
Nance, R. D., Murphy, J. B. & Keppie, J. D. 2002. A Cordilleran model for the evolution of Avalonia. Tectonophysics 352, 1131.Google Scholar
Osozawa, S., Morimoto, J. & Flower, M. F. J. 2009. ‘Block-in-matrix’ fabrics that lack shearing but possess composite cleavage planes: A sedimentary mélange origin for the Yuwan accretionary complex in the Ryukyu island arc, Japan. Geological Society of America Bulletin 121, 1190–203.Google Scholar
Pandey, P., Kumar, R., Suresh, N., Sangode, S. J. & Pandey, A. K. 2009. Soft-sediment deformation in contemporary reservoir sediment: A repository of recent major earthquake events in Garhwal Himalaya. Journal of Geology 117, 200–9.Google Scholar
Saffer, D. M. 2010. Hydrostratigraphy as a control on subduction zone mechanics through its effects on drainage: an example from the Nankai Margin, SW Japan. Geofluids 10, 114–31.Google Scholar
Scudder, R. P., Murray, R. W. & Plank, T. 2009. Dispersed ash in deeply buried sediment from the northwest Pacific Ocean: an example from the Izu-Bonin arc (ODP Site 1149). Earth and Planetary Science Letters 284, 639–48.Google Scholar
Stern, R. J. 2002. Subduction zones. Reviews of Geophysics 40, 4.Google Scholar
Tait, J. A., Bachtadse, V., Franke, W. & Soffel, H. C. 1997. Geodynamic evolution of the European Variscan fold belt: palaeomagnetic and geological constraints. Geologische Rundschau 86, 585–98.Google Scholar
Tyszka, R., Kryza, R., Zalasiewicz, J. A. & Larionov, A. N. 2008. Multiple Archaean to Early Palaeozoic events of the northern Gondwana margin witnessed by detrital zircons from the Radzimowice Slates, Kaczawa Complex (Central European Variscides). Geological Magazine 145, 8593.Google Scholar
Ujiie, K. 2002. Evolution and kinematics of an ancient décollement zone, mélange in the Shimanto accretionary complex of Okinawa Island, Ryukyu Arc. Journal of Structural Geology 24, 937–52.Google Scholar
von Huene, R. & Scholl, D. W. 1991. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental-crust. Reviews of Geophysics 29, 279316.Google Scholar
von Huene, R. & Scholl, D. W. 1993. The return of sialic material to the mantle indicated by terrigenous material subducted at convergent margins. Tectonophysics 219, 163–75.Google Scholar
von Huene, R. & Suess, E. 1988. Ocean Drilling Program Leg-112, Peru continental-margin. 1. Tectonic history. Geology 16, 934–8.Google Scholar
Winchester, J. A., Pharaoh, T. C. & Verniers, J. 2002. Palaeozoic amalgamation of Central Europe: an introduction and synthesis of new results from recent geological and geophysical investigations. In Palaeozoic Amalgamation of Central Europe (eds Winchester, J. A., Pharaoh, T. C. & Verniers, J.), pp. 118. Geological Society of London, Special Publications no. 201.Google Scholar