Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T19:35:16.431Z Has data issue: false hasContentIssue false

Petrogenesis of Cenozoic mafic–ultramafic alkaline lavas from the Tigris volcanic field, NE Syria

Published online by Cambridge University Press:  04 March 2011

ABDEL-FATTAH M. ABDEL-RAHMAN*
Affiliation:
Department of Geology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon, and Ministère de l'Agriculture, des Pêcheries et de l'Alimentation, Sainte-Foy, Québec, G1R 4×6, Canada
NANCY A. LEASE
Affiliation:
Department of Geology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon, and Ministère de l'Agriculture, des Pêcheries et de l'Alimentation, Sainte-Foy, Québec, G1R 4×6, Canada
*
*Author for correspondence: arahman@aub.edu.lb

Abstract

Mafic–ultramafic Quaternary lava flows form the Tigris volcanic field (covering 1750 km2) at the northeastern tip of Syria and extend into Turkey. This volcanic field occurs between the Euphrates graben and the Bitlis–Zagros collision suture that forms the boundary between the Arabian and Eurasian plates. The rocks are made up of labradorite, clinopyroxene, olivine and opaque phases. The Tigris lavas are compositionally restricted to basanites and alkali basalts, having a narrow range of major element compositions (SiO2, 42.2–48.2 wt%; MgO, 5.7–9.0 wt%, with Mg numbers ranging from 0.51 to 0.62; TiO2, 1.7–3.2 wt%), and are alkaline in nature. The rocks are enriched in HFS elements such as Zr (119–231 ppm), Nb (14–43 ppm) and Y (17–22 ppm). The REE patterns are strongly fractionated ((La/Yb)N = 10.6), indicative of a garnet-bearing source. The 143Nd/144Nd isotopic compositions range from 0.512803 to 0.512908, and 87Sr/86Sr from 0.70327 to 0.70403 (εNd = 3.2–5.3) suggesting strong affinities to ocean island basalts. Modelling using a variety of mantle source materials and different degrees of partial melting indicates that the magma was produced by a small degree of batch partial melting (F = 1.5%) of a primitive, garnet-lherzolite fertile mantle source. The overall petrological/chemical nature supports this interpretation. Shear heating at the base of the lithospheric mantle of the northern boundary of the Arabian plate, caused by a change in plate motion as the Arabian plate moved in a more easterly direction during the Plio-Quaternary, could represent a possible source of the heat necessary for partial fusion and magma generation. Adiabatic decompression and melting represents a more likely process for the generation of the Tigris magma. Elemental ratios such as K/P (4.6), La/Ta (12), La/Nb (0.90), Nb/Y (1.22) and Th/Nb (0.09) indicate that the magma was subjected to minimal crustal contamination.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Rahman, A. M. 2002. Mesozoic volcanism in the Middle East: geochemical, isotopic and petrogenetic evolution of extension-related alkali basalts from central Lebanon. Geological Magazine 139, 621–40.CrossRefGoogle Scholar
Abdel-Rahman, A. M. & Kumarapeli, P. S. 1999. Geochemistry and petrogenesis of the Tibbit Hill metavolcanic suite of the Appalachian Fold Belt, Quebec-Vermont: a plume-related and fractionated assemblage. American Journal of Science 299, 210–37.CrossRefGoogle Scholar
Abdel-Rahman, A. M. & Nassar, P. E. 2004. Cenozoic volcanism in the Middle East: petrogenesis of alkali basalts from northern Lebanon. Geological Magazine 141, 545–63.CrossRefGoogle Scholar
Allègre, C. J., Hamelin, B., Provost, A. & Dupré, B. 1987. Topology in isotopic multispace and origin of mantle chemical heterogeneities. Earth and Planetary Science Letters 81, 319–37.CrossRefGoogle Scholar
Allègre, C. J. & Minster, J. F. 1978. Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters 38, 125.CrossRefGoogle Scholar
Baker, J. A., Chazot, G., Menzies, M. A. & Thirlwall, M. F. 1998. Metasomatism of the shallow mantle beneath Yemen by the Afar plume – implications for mantle plumes, flood volcanism, and intraplate volcanism. Geology 26, 431–4.2.3.CO;2>CrossRefGoogle Scholar
Baker, J. A., Menzies, M. A., Thirlwall, M. F. & Macpherson, C. J. 1997. Petrogenesis of Quaternary intraplate volcanism, Sana'a, Yemen: implications for plume-lithosphere interaction and polybaric melt hybridization. Journal of Petrology 38, 1359–90.CrossRefGoogle Scholar
Baker, J. A., Thirlwall, M. F. & Menzies, M. A. 1996. Sr-Nd-Pb isotopic and trace element evidence for crustal contamination of plume-derived flood basalts: Oligocene flood volcanism in western Yemen. Geochimica et Cosmochimica Acta 60, 2559–81.CrossRefGoogle Scholar
Baldridge, W. S., Eyal, Y., Bartov, Y., Steinitz, G. & Eyal, M. 1991. Miocene magmatism of Sinai related to the opening of the Red Sea. Tectonophysics 197, 181201.CrossRefGoogle Scholar
Barberi, F., Ferrara, G., Santacroce, R., Treuil, M. & Varet, J. 1975. A transitional basalt-pantellerite sequence of fractional crystallization: the Boina center (Afar rift, Ethiopia). Journal of Petrology 16, 2256.CrossRefGoogle Scholar
Barrat, J. A., Fourcade, S., Jahn, B. M., Cheminèe, J. L. & Capdevila, R. 1998. Isotope (Sr, Nd, Pb, O) and trace element geochemistry of volcanics from the Erta’ Ale range (Ethiopia). Journal of Volcanology and Geothermal Research 80, 85100.CrossRefGoogle Scholar
Bertrand, H., Chazot, G., Blichert-Toft, J. & Thoral, S. 2003. Implications of widespread high–μ volcanism on the Arabian Plate for Afar mantle plume and lithosphere composition. Chemical Geology 198, 4761.CrossRefGoogle Scholar
Bradshaw, T. K. & Smith, E. I. 1994. Polygenetic Quaternary volcanism at Crater Flat, Nevada. Journal of Volcanology and Geothermal Research 63, 165–82.CrossRefGoogle Scholar
Brown, M. 1994. The generation, segregation, ascent and emplacement of granite magma: the migmatite-to-crustally-derived granite connection in thickened orogens. Earth Science Reviews 36, 83130.CrossRefGoogle Scholar
Camp, V. E. & Roobol, M. J. 1989. The Arabian continental alkali basalt province: Part I. Evolution of Harrat Rahat, Kingdom of Saudi Arabia. Geological Society of America Bulletin 101, 7195.2.3.CO;2>CrossRefGoogle Scholar
Camp, V. E. & Roobol, M. J. 1992. Upwelling asthenosphere beneath western Arabia and its regional implications. Journal of Geophysical Research 97B, 15255–71.CrossRefGoogle Scholar
Camp, V. E., Roobol, M. J. & Hooper, P. R. 1992. The Arabian continental alkali basalt province: Part III. Evolution of Harrat Kishb, Kingdom of Saudi Arabia. Geological Society of America Bulletin 104, 379–96.2.3.CO;2>CrossRefGoogle Scholar
Chaffey, D. J., Cliff, R. A. & Wilson, B. M. 1989. Characterization of the St Helena magma source. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 257–76. Geological Society of London, Special Publication no. 42.Google Scholar
Chen, W. & Arculus, R. J. 1995. Geochemical and isotopic characteristics of lower crustal xenoliths, San Francisco Volcanic Field, Arizona, U.S.A. Lithos 36, 203325.CrossRefGoogle Scholar
de Gruyter, P. & Vogel, T. A. 1981. A model for the origin of the alkaline complexes of Egypt. Nature 291, 571–4.CrossRefGoogle Scholar
Dubertret, L. 1955. Carte Geologique du, Liban aux 1/200,000, avec notice explicative. Ministire des Travaux Public, Beyrouth. 74 pp.Google Scholar
Ebinger, C. J. & Sleep, N. H. 1998. Cenozoic magmatism throughout east Africa resulting from impact of a single plume. Nature 395, 788–91.CrossRefGoogle Scholar
Ellam, R. M. 1992. Lithospheric thickness as a control on basalt geochemistry. Geology 20, 153–6.2.3.CO;2>CrossRefGoogle Scholar
Fitton, J. G., James, D. & Leeman, W. P. 1991. Basic magmatism associated with Late Cenozoic extension in the western United States: compositional variations in space and time. Journal of Geophysical Research 96, 13693–712.CrossRefGoogle Scholar
Frey, F. A., Clague, D., Mahoney, J. J. & Sinton, J. M. 2000. Volcanism at the edge of the Hawaiian plume: petrogenesis of submarine alkalic lavas from the North Arch Volcanic Field. Journal of Petrology 41, 667–91.CrossRefGoogle Scholar
Frey, F. A., Green, D. H. & Roy, S. D. 1978. Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilites from southeastern Australia utilizing geochemical and experimental data. Journal of Petrology 19, 463513.CrossRefGoogle Scholar
Furman, T., Bryce, J. G., Karson, J. & Iotti, A. 2004. East African Rift System (EARS) plume structure: insights from Quaternary mafic lavas of Turkana, Kenya. Journal of Petrology 45, 1069–88.CrossRefGoogle Scholar
Furman, T., Kaleta, K. M., Bryce, J. G. & Hanan, B. B. 2006. Tertiary mafic lavas of Turkana, Kenya: constraints on East African plume structure and the occurrence of high–μ volcanism in Africa. Journal of Petrology 47, 1221–44.CrossRefGoogle Scholar
Garfunkel, Z. 1989. Tectonic setting of Phanerozoic magmatism in Israel. Israel Journal of Earth Sciences 38, 5174.Google Scholar
Gast, P. W. 1968. Trace element fractionation and the origin of tholeiitic and calc-alkaline magma types. Geochimica et Cosmochimica Acta 32, 1057–86.CrossRefGoogle Scholar
George, R. & Rogers, N. 2002. Plume dynamics beneath the African plate inferred from the geochemistry of the Tertiary basalts of southern Ethiopia. Contributions to Mineralogy and Petrology 144, 286304.CrossRefGoogle Scholar
Giannérini, G., Campredon, R., Féraud, G. & Abou Zakhem, B. 1988. Déformations introplaques et volcanisme associé: exemple de la bordure NW de la plaque Arabique au Cénozoïque. Bulletin de la Société géologique de France 8, 937–47.CrossRefGoogle Scholar
Gibb, F. G. F. & Henderson, C. M. B. 2006. Chemistry of the Shiant Isles main sill, NW Scotland, and wider implications for the petrogenesis of mafic sills. Journal of Petrology 47, 191230.CrossRefGoogle Scholar
Gibson, S. A., Thompson, R. N., Weska, R. K., Dickin, A. P. & Leonardos, O. H. 1997. Late Cretaceous rift-related upwelling and melting of the Trinidad starting mantle plume head beneath western Brazil. Contributions to Mineralogy and Petrology 126, 303–14.CrossRefGoogle Scholar
Hanson, G. N. 1980. Rare earth elements in petrogenetic studies of igneous systems. Annual Reviews in Earth Sciences 8, 371406.CrossRefGoogle Scholar
Hart, S. R. 1988. Heterogeneous mantle domains signatures, genesis and mixing chronologies. Earth and Planetary Science Letters 90, 273–96.CrossRefGoogle Scholar
Hart, W. K., Wolde, G. C., Walter, R. C. & Mertzman, S. A. 1989. Basaltic volcanism in Ethiopia: constraints on continental rifting and mantle interactions. Journal of Geophysical Research 94, 7731–48.CrossRefGoogle Scholar
Haase, K. M. 1996. The relationship between the age of the lithosphere and the composition of oceanic magmas: constraints on partial melting, mantle sources, and the thermal structure of the plates. Earth and Planetary Science Letters 144, 7592.CrossRefGoogle Scholar
Haase, K. M., Stoffers, P. & Garbe-Schönberg, C. D. 1997. The petrogenetic evolution of lavas from Easter Island and neighbouring seamounts, near-ridge hotspot volcanoes in the SE Pacific. Journal of Petrology 38, 785813.CrossRefGoogle Scholar
Hoernle, K. & Schmincke, H. U. 1993. The role of partial melting in the 15 Ma geochemical erosion of Gran Canaria: a blob model for the Canary hotspot. Journal of Petrology 34, 599626.CrossRefGoogle Scholar
Hofmann, A. W. 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–29.CrossRefGoogle Scholar
Kelemen, P. B., Hirth, G., Shimizu, N., Spiegelman, M. & Dick, H. J. B. 1997. A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Philosophical Transactions of the Royal Society of London A-355, 283318.CrossRefGoogle Scholar
Lassiter, J. C., DePaolo, D. J. & Mahoney, J. J. 1995. Geochemistry of the Wrangellia Flood Basalt Province: implications for the role of continental and oceanic lithosphere in flood basalt genesis. Journal of Petrology 36, 9831009.CrossRefGoogle Scholar
Laws, E. D. & Wilson, M. 1997. Tectonics and magmatism associated with Mesozoic passive continental margin development in the Middle East. Journal of the Geological Society, London 154, 757–60.CrossRefGoogle Scholar
Lease, N. A. & Abdel-Rahman, A. M. 2008. The Euphrates volcanic field, northeastern Syria: petrogenesis of Cenozoic basanites and alkali basalts. Geological Magazine 145, 685701.CrossRefGoogle Scholar
Le Bas, M. J. & Streckeisen, A. L. 1991. The IUGS systematics of igneous rocks. Journal of the Geological Society, London 148, 825–33.CrossRefGoogle Scholar
Loubet, M. 1976. Géochimie des terres rares dans les massifs de péridotites dits de ‘haute température’: évolution du manteau terrestre. Published Thèse de Doctorat d’ètat, Université de Paris VII, Paris. 380 pp.Google Scholar
Lustrino, M. & Sharkov, E. 2006. Neogene volcanic activity of western Syria and its relationship with Arabian plate kinematics. Journal of Geodynamics 42, 140–58.CrossRefGoogle Scholar
Lyberis, N., Yurur, T., Chorowicz, J., Kasapoglu, E. & Gundogdu, N. 1992. The East Anatolian Fault: an oblique collisional belt. In The Afro-Arabian Rift System (ed. R. Altherr). Tectonophysics 204, 115.CrossRefGoogle Scholar
McKenzie, D. P. & O'Nions, R. K. 1991. Partial melting distributions from inversion of rare earth element concentrations. Journal of Petrology 32, 1021–91.CrossRefGoogle Scholar
Melluso, L., Beccaluva, L., Brotzu, P., Gregnanin, A., Gupta, A. K., Morbidelli, L. & Traversa, G. 1995. Constraints on the mantle sources of the Deccan Traps from the petrology and geochemistry of the basalts of Gujarat State (Western India). Journal of Petrology 36, 1393–432.CrossRefGoogle Scholar
Menzies, M. A. & Kyle, R. 1990. Continental volcanism: a crust-mantle probe. In Continental Mantle (ed. Menzies, M. A.), pp. 157–77. Oxford: Oxford Science Publishers.Google Scholar
Meschede, M. A. 1986. A method of discriminating between different types of mid ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology 56, 207–18.CrossRefGoogle Scholar
Mohr, P. 1983. Ethiopian flood basalt province. Nature 303, 577–84.CrossRefGoogle Scholar
Mouty, M., Delaloye, M., Fontignie, D., Piskin, O. & Wagner, J.-J. 1992. The volcanic activity in Syria and Lebanon between Jurassic and actual. Schweizerische Mineralogische Und Petrografische Mitteilungen 72, 91105.Google Scholar
Nicholson, H. & Latin, D. 1992. Olivine tholeiites from Krafla, Iceland: evidence for variation in melt fraction within a plume. Journal of Petrology 33, 1105–24.CrossRefGoogle Scholar
Notsu, K., Fujitani, T., Ui, T., Matsuda, J. & Ercan, T. 1995. Geochemical features of collision-related volcanic rocks in central and eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research 64, 171–92.CrossRefGoogle Scholar
Pankhurst, R. J. 1977. Open system fractionation and incompatible element variations in basalts. Nature 268, 36–8.CrossRefGoogle Scholar
Pearce, J. A. 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In Continental Basalts and Mantle Xenoliths (eds Hawkesworth, C. J. & Norry, M. J.), pp. 230–49. Cheshire, UK: Shiva Publishing Ltd.Google Scholar
Pearce, J. A., Bender, J. F., De Long, S. E., Kidd, W. S. F., Low, P. J., Güner, Y., Saroglu, F., Yilmaz, Y., Moorbath, S. & Mitchell, J. G. 1990. Genesis of collision volcanism in Eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research 44, 189229.CrossRefGoogle Scholar
Pearce, J. A. & Norry, M. J. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology 69, 3347.CrossRefGoogle Scholar
Pik, R., Deniel, C., Coulon, C., Yirgu, G. & Marty, B. 1999. Isotopic and trace element signatures of Ethiopian flood basalts; evidence for plume-lithosphere interactions. Geochimica et Cosmochimica Acta 63, 2263–79.CrossRefGoogle Scholar
Ponikarov, V. P. (ed.) 1967. The Geology of Syria: Explanatory Notes on the Geological Map of Syria, Scale 1:5 000 000, Part I, Stratigraphy, Igneous Rocks and Tectonics. Damascus, Syria: Ministry of Industry, 88 pp.Google Scholar
Presnall, D. C. 1969. The geometrical analysis of partial fusion. American Journal of Science 267, 1178–94.CrossRefGoogle Scholar
Richard, P., Shimizu, N. & Allègre, C. J. 1976. 143Nd/144Nd, a natural tracer: an application to oceanic basalts. Earth and Planetary Science Letters 31, 269–78.CrossRefGoogle Scholar
Sawaf, T., Al-Saad, D., Gebran, A., Barazangi, M., Best, J. A. & Chaimov, T. 1993. Stratigraphy and structure of eastern Syria across the Euphrates depression. Tectonophysics 220, 267–81.CrossRefGoogle Scholar
Schilling, J. G. & Winchester, J. W. 1967. Rare-earth fractionation and magmatic processes. In Mantles of Earth and Terrestrial Planets (ed. Runcorn, S. K.), pp. 267–83. New York, N. Y.: Interscience.Google Scholar
Shaw, D. M. 1970. Trace element fractionation during anatexis. Geochimica et Cosmochimica Acta 34, 237343.CrossRefGoogle Scholar
Shaw, J. E., Baker, J. A., Menzies, M. A., Thirlwall, M. F. & Ibrahim, K. M. 2003. Petrogenesis of the largest intraplate volcanic field on the Arabian Plate (Jordan): a mixed lithosphere-asthenosphere source activated by lithospheric extension. Journal of Petrology 44, 1657–79.CrossRefGoogle Scholar
Shaw, H. R. & Jackson, E. D. 1973. Linear island chains in the Pacific; results of thermal plumes or gravitational anchors? Journal of Geophysical Research 78, 8634–52.CrossRefGoogle Scholar
Smith, E. I., Sánchez, A., Walker, J. D. & Wang, K. 1999. Geochemistry of mafic magmas in the Hurricane Volcanic Field, Utah: implications for small- and large-scale chemical variability of the lithospheric mantle. Journal of Geology 107, 433–48.CrossRefGoogle Scholar
Spera, F. J. 1980. Aspects of magma transport. In Physics of Magmatic Processes (ed. Hargraves, R. B.), pp. 265324. Princeton, New Jersey: Princeton University Press.CrossRefGoogle Scholar
Staudigel, H., Zindler, A., Hart, S. R., Leslie, C. Y. & Clague, D. 1984. The isotope systematics of a juvenile intra-plate volcano: Pb, Nd and Sr isotope ratios of basalts from Loihi Seamount, Hawaii. Earth and Planetary Science Letters 69, 1329.CrossRefGoogle Scholar
Stewart, K. & Rogers, N. 1996. Mantle plume and lithosphere contributions to basalts from southern Ethiopia. Earth and Planetary Science Letters 139, 195211.CrossRefGoogle Scholar
Sun, S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Treuil, M. & Joron, J. M. 1975. Utilisation des éléments hygromagmatophiles pour la simplification de la modélisation quantitative des processus magmatiques. Exemples de l'Afar et de la dorsade médioatlantique. Société Italiana Mineralogié et Petrologié, 31, 125–42.Google Scholar
Weaver, B. L. 1991. Trace element evidence for the origin of ocean-island basalts. Geology 19, 123–6.2.3.CO;2>CrossRefGoogle Scholar
Weinstein, Y., Navon, O., Altherr, R. & Stein, M. 2006. The role of lithospheric mantle heterogeneity in the generation of Plio-Pleistocene alkali basaltic suites from Harrat Ash Shaam (Israel). Journal of Petrology 47, 1017–50.CrossRefGoogle Scholar
White, W. M. 1985. Sources of oceanic basalts: radiogenic isotopic evidence. Geology 13, 115118.2.0.CO;2>CrossRefGoogle Scholar
White, R. S. & McKenzie, D. P. 1989. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. Journal of Geophysical Research 94, 7685–730.CrossRefGoogle Scholar
Wilson, M. 1993. Geochemical signatures of oceanic and continental basalts: a key to mantle dynamics? Journal of the Geological Society, London 150, 977–90.CrossRefGoogle Scholar
Witt-Eickschen, G. & Kramm, U. 1997. Mantle upwelling and metasomatism beneath central Europe: geochemical and isotopic constraints from mantle xenoliths from the Rhon (Germany). Journal of Petrology 38, 479–93.CrossRefGoogle Scholar
Wittke, J. H. & Mack, L. E. 1993. OIB-like mantle source for continental alkaline rocks of the Balcones province, Texas: trace element and isotopic evidence. Journal of Geology 101, 333–44.CrossRefGoogle Scholar