Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T04:59:46.689Z Has data issue: false hasContentIssue false

Petrogenesis of plagiogranites in the Muslim Bagh Ophiolite, Pakistan: implications for the generation of Archaean continental crust

Published online by Cambridge University Press:  02 April 2018

DANIEL COX*
Affiliation:
School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
ANDREW C. KERR
Affiliation:
School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
ALAN R. HASTIE
Affiliation:
School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
M. ISHAQ KAKAR
Affiliation:
Centre of Excellence in Mineralogy, University of Balochistan, Quetta, Pakistan
*
Author for correspondence: DXC506@student.bham.ac.uk

Abstract

High-SiO2 rocks referred to as oceanic plagiogranites are common within the crustal sequences of ophiolites; however, their mode of petrogenesis is controversial with both late-stage fractional crystallization and partial melting models being proposed. Here, we present new whole-rock data from plagiogranitic dyke-like bodies and lenses from the lower and middle sections of the sheeted dyke complex of the Cretaceous Muslim Bagh Ophiolite, northwestern Pakistan. The plagiogranites have similar geochemical signatures that are inconsistent with them being the fractionation products of the mafic units of the Muslim Bagh Ophiolite. However, the plagiogranites all display very low TiO2 contents (<0.4 wt%), implying that they formed by partial melting of mafic rocks. Melt modelling of a crustal gabbro from the Muslim Bagh Ophiolite shows that the trace-element signature of the plagiogranites can be replicated by 5–10% melting of a crustal hornblende gabbro with amphibole as a residual phase, resulting in a concave-up middle rare Earth element pattern. Compositional similarities between the Muslim Bagh Ophiolite plagiogranites and Archaean TTG (trondhjemite–tonalite–granodiorite) has implications for the generation of juvenile Archaean continental crust. As the Muslim Bagh Ophiolite was derived in a supra-subduction zone, it is suggested that some Archaean TTG may have been derived from melting of mafic upper crust in early subduction-like settings. However, due to the small volume of Muslim Bagh Ophiolite plagiogranites, it is inferred that they can be instructive on the petrogenesis of some, but not all, Archaean TTG.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, Z. & Abbas, S. G. 1979. The Muslim Bagh Ophiolites. In Geodynamics of Pakistan (eds Farah, A. & DeJong, A.), pp. 243–51. Pakistan: Geological Survey of Pakistan.Google Scholar
Amri, I., Benoit, M. & Ceuleneer, G. 1996. Tectonic setting for the genesis of oceanic plagiogranites: evidence from a paleo-spreading structure in the Oman Ophiolite. Earth and Planetary Science Letters 139, 177–94.Google Scholar
Aranovich, L. Y., Bortnikov, N. S., Serebryakov, N. S. & Sharkov, E. V. 2010. Conditions of the formation of plagiogranite from the Markov Trough, Mid-Atlantic Ridge, 5°52′-6°02′N. Doklady Earth Sciences 434, 1257–62.Google Scholar
Asrarullah, Ahmad Z. & Abbas, S. G. 1979. Ophiolites in Pakistan: an introduction. In Geodynamics of Pakistan (eds Farah, A. & DeJong, A.), pp. 181–92. Pakistan: Geological Survey of Pakistan.Google Scholar
Barker, F. 1979. Trondhjemite: definition, environment and hypothesis of origin. In Trondhjemites, Dacites, and Related Rocks (ed. Barker, F.), pp. 112. Amsterdam: Elsevier.Google Scholar
Beard, J. S. & Lofgren, G. E. 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3 and 6.9 kb. Journal of Petrology 32, 365401.Google Scholar
Bedard, J. H. 2006. A catalytic delamination-driven model for coupled genesis of Archean crust and sub-continental lithospheric mantle. Geochimica et Cosmochimica Acta 70, 1188–214.Google Scholar
Coleman, R. G. & Donato, M. M. 1979. Oceanic plagiogranite revisited. In Trondhjemites, Dacites, and Related Rocks (ed. Barker, F.), pp. 149–68. Amsterdam: Elsevier.Google Scholar
Coleman, R. G. & Peterman, Z. E. 1975. Oceanic plagiogranite. Journal of Geophysical Research 80, 1099–108.Google Scholar
Condie, K. C. 2005. TTGs and adakites: are they both slab melts? Lithos 80, 3344.Google Scholar
Davidson, J., Turner, S. & Plank, T. 2012. Dy/Dy*: Variations arising from mantle sources and petrogenetic processes. Journal of Petrology 54, 525–37.Google Scholar
Dick, H. J. B., Natland, J. H., Alt, J. C., Bach, W., Bideau, D., Gee, J. S., Haggas, S., Hertogen, J. G. H., Hirth, G., Holm, P. M., Ildefonse, B., Iturrino, G. J., John, B. E., Kelley, D. S., Kikawa, E., Kingdon, A., LeRoux, P. J., Maeda, J., Meyer, P. S., Miller, J., Naslund, H. R., Niu, Y. -L., Robinson, P. T., Snow, J., Stephen, R. A., Trimby, P. W., Worm, H. -U. & Yoshinobu, A. 2000. A long in situ section of the lower crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth and Planetary Science Letters 179, 3151.Google Scholar
Dixon, S. & Rutherford, M. J. 1979. Plagiogranites as late-stage immiscible liquids in ophiolite and mid-ocean ridge suites an experimental study. Earth and Planetary Science Letters 45, 4560.Google Scholar
Drummond, M. S., Defant, M. J. & Kepezhinskas, P. K. 1996. Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. Transactions of the Royal Society of Edinburgh 87, 205–15.Google Scholar
Erdmann, M., Fischer, L. A., France, L., Zhang, C., Godard, M. & Koepke, J. 2015. Anatexis at the roof of an oceanic magma chamber at IODP Site 1256 (equatorial Pacific): an experimental study. Contributions to Mineralogy and Petrology 169, 128.Google Scholar
Flagler, P. A. & Spray, J. G. 1991. Generation of plagiogranite by amphibolite anatexis in oceanic shear zones. Geology 19, 70–3.Google Scholar
Floyd, P. A. & Winchester, J. A. 1975. Magma type and tectonic setting discrimination using immobile elements. Earth and Planetary Science Letters 27, 211–8.Google Scholar
Foley, S. F., Tiepolo, M. & Vannucci, R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417, 837–40.Google Scholar
France, L., Ildefonse, B. & Koepke, J. 2009. Interactions between magma and hydrothermal system in Oman Ophiolite and in IODP Hole 1256D: fossilization of a dynamic melt lens at fast spreading ridges. Geochemistry, Geophysics, Geosystems 10, 130.Google Scholar
France, L., Koepke, J., Ildefonse, B., Cichy, S. B. & Deschamps, F. 2010. Hydrous partial melting in the sheeted dike complex at fast spreading ridges: experimental and natural observations. Contributions to Mineralogy and Petrology 160, 683704.Google Scholar
Freund, S., Haase, K. M., Keith, M., Beier, C. & Garbe-Schonberg, D. 2014. Constraints on the formation of geochemically variable plagiogranite intrusions in the Troodos Ophiolite, Cyprus. Contributions to Mineralogy and Petrology 167, 122.Google Scholar
Gerlach, D. C., Leeman, W. P. & Ave Lallemant, H. G. 1981. Petrology and geochemistry of plagiogranite in the Canyon Mountain Ophiolite, Oregon. Contributions to Mineralogy and Petrology 77, 8292.Google Scholar
Gillis, K. M. & Coogan, L. A. 2002. Anatectic migmatites from the roof of an ocean ridge magma chamber. Journal of Petrology 43, 2075–95.Google Scholar
Gnos, E., Immenhauser, A. & Peters, T. 1997. Late Cretaceous/early Tertiary convergence between the Indian and Arabian plates recorded in ophiolites and related sediments. Tectonophysics 271, 119.Google Scholar
Grimes, C. B., Ushikubo, T., John, B. E. & Valley, J. W. 2011. Uniformly mantle-like Delta18O in zircons from oceanic plagiogranites and gabbros. Contributions to Mineralogy and Petrology 161, 1333.Google Scholar
Hamilton, W. B. 1998. Archean magmatism and deformation were not products of plate tectonics. Precambrian Research 91, 143–79.Google Scholar
Hastie, A. R., Fitton, J. G., Bromiley, G. D., Butler, I. B. & Odling, N. W. A. 2016. The origin of Earth's first continents and the onset of plate tectonics. Geology 44, 855–8.Google Scholar
Hastie, A. R., Fitton, J. G., Mitchell, S. F., Neill, I. M., Nowell, G. & Millar, I. L. 2015. Can fractional crystallization, mixing and assimilation processes be responsible for Jamaican-type adakites? Implications for generating EoArchean continental crust. Journal of Petrology 56, 1251–84.Google Scholar
Hastie, A. R., Kerr, A. C., Mitchell, S. F. & Millar, I. L. 2009. Geochemistry and tectonomagmatic significance of lower Cretaceous island arc lavas from the Devils Racecourse Formation, eastern Jamaica. In The Origin and Evolution of the Caribbean Plate (eds James, K. H., Lorente, M. A. & Pindell, J. L.), pp. 339–60. Geological Society of London, Special Publication no. 328.Google Scholar
Hastie, A. R., Kerr, A. C., Pearce, J. A. & Mitchell, S. F. 2007. Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th-Co discrimination diagram. Journal of Petrology 48, 2341–57.Google Scholar
Hawkesworth, C. J., Cawood, P. A. & Dhuime, B. 2016. Tectonics and crustal evolution. GSA Today 26, 411.Google Scholar
Jafri, S. H., Charan, S. N. & Govil, P. K. 1995. Plagiogranite from the Andaman Ophiolite Belt, Bay of Bengal, India. Journal of the Geological Society, London 152, 681–7.Google Scholar
Kakar, M. I., Collins, A. S., Mahmood, K., Foden, J. D. & Khan, M. 2012. U-Pb zircon crystallization age of the Muslim Bagh Ophiolite: Enigmatic remains of an extensive pre-Himalayan arc. Geology 40, 1099–102.Google Scholar
Kakar, M. I., Kerr, A. C., Mahmood, K., Collins, A. S., Khan, M. & McDonald, I. 2014. Supra-subduction zone tectonic setting of the Muslim Bagh Ophiolite, northwestern Pakistan: Insights from geochemistry and petrology. Lithos 202–203, 190206.Google Scholar
Kasi, A. K., Kassi, A. M., Umar, M., Manan, R. A. & Kakar, M. I. 2012. Revised lithostratigraphy of the Pishin Belt, northwestern Pakistan. Journal of Himalayan Earth Sciences 45, 5365.Google Scholar
Kaur, G. & Mehta, P. K. 2005. The Gothara plagiogranite: evidence for oceanic magmatism in a non-ophiolitic association, North Khetri Copper Belt, Rajasthan, India? Journal of Asian Earth Sciences 25, 805–19.Google Scholar
Kerrich, R. & Polat, A. 2006. Archean greenstone-tonalite duality: Thermochemical mantle convection models or plate tectonics in the early Earth global dynamics? Tectonophysics 415, 141–65.Google Scholar
Khan, M., Kerr, A. C. & Mahmood, K. 2007. Formation and tectonic evolution of the Cretaceous-Jurassic Muslim Bagh ophiolitic complex, Pakistan: implications for the composite tectonic setting of ophiolites. Journal of Asian Earth Sciences 31, 112–27.Google Scholar
Khan, S. D., Mahmood, K. & Casey, J. F. 2007. Mapping of Muslim Bagh ophiolite complex (Pakistan) using new remote sensing, and field data. Journal of Asian Earth Sciences 30, 333–43.Google Scholar
Khan, S. D., Walker, D. J., Hall, S. A., Burke, K. C., Shah, M. T. & Stockli, L. 2009. Did the Kohistan-Ladakh island arc collide first with India? Bulletin of the Geological Society of America 121, 366–84.Google Scholar
Koepke, J., Berndt, J., Feig, S. T. & Holtz, F. 2007. The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contributions to Mineralogy and Petrology 153, 6784.Google Scholar
Koepke, J., Feig, S. T., Snow, J. & Freise, M. 2004. Petrogenesis of oceanic plagiogranites by partial melting of gabbros: an experimental study. Contributions to Mineralogy and Petrology 146, 414–32.Google Scholar
Kusky, T. M., Windley, B. F., Safonova, I., Wakita, K., Wakabayashi, J., Polat, A. & Santosh, M. 2013. Recognition of ocean plate stratigraphy in accretionary orogens through Earth history: a record of 3.8 billion years of sea floor spreading, subduction, and accretion. Gondwana Research 24, 501–47.Google Scholar
Laurent, O., Doucelance, R., Martin, H. & Moyen, J. F. 2013. Differentiation of the late-Archean sanukitoid series and some implications for crustal growth: Insights from geochemical modelling on the Bulai pluton, Central Limpopo Belt, South Africa. Precambrian Research 227, 186203.Google Scholar
Laurie, A. & Stevens, G. 2012. Water-present eclogite melting to produce Earth's early felsic crust. Chemical Geology 314–317, 8395.Google Scholar
Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B. & Bateman, P. (eds) 2002. Igneous Rocks: A Classification and Glossary of Terms. Cambridge: Cambridge University Press.Google Scholar
Mahmood, K., Boudier, F., Gnos, E., Monie, P. & Nicolas, A. 1995. 40Ar/39Ar dating of the emplacement of the Muslim Bagh Ophiolite, Pakistan. Tectonophysics 250, 169–81.Google Scholar
Martin, H., Smithies, R. H., Rapp, R., Moyen, J. F. & Champion, D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos 79, 124.Google Scholar
McDonald, I. & Viljoen, K. S. 2006. Platinum-group element geochemistry of mantle eclogites: a reconnaissance study of xenoliths from the Orapa kimberlite, Botswana. Applied Earth Science 115, 8193.Google Scholar
Mengal, J. M., Kimura, K., Siddiqui, R. H., Kojima, S., Naka, T., Bakht, M. S. & Kamada, K. 1994. The lithology and structure of a Mesozoic sedimentary-igneous assemblage beneath the Muslim Bagh Ophiolite, northern Balochistan, Pakistan. Bulletin of the Geological Survey of Japan 2, 5161.Google Scholar
Milovanovic, D., Sreckovic-Batocanin, D., Savic, M. & Popovic, D. 2012. Petrology of plagiogranite from Sjenica, Dinaridic Ophiolite Belt (southwestern Serbia). Geologica Carpathica 63, 97106.Google Scholar
Moyen, J. F. & Martin, H. 2012. Forty years of TTG research. Lithos 148, 312–36.Google Scholar
Moyen, J. F. & Stevens, G. 2006. Experimental constraints on TTG petrogenesis: implications for Archean geodynamics. In Archean Geodynamics and Environments (eds Benn, K., Mareschal, J. -C. & Condie, K. C.), pp. 149–75. American Geophysical Union, Washington D.C., Geophysical Monograph no. 164.Google Scholar
Nakamura, K., Morishita, T., Chang, Q., Neo, N. & Kumagai, H. 2007. Discovery of lanthanide tetrad effect in an oceanic plagiogranite from an ocean core complex at the Central Indian Ridge 25S. Geochemical Journal 41, 135–40.Google Scholar
Nutman, A. P., Bennett, V. C., Friend, C. R. L., Jenner, F., Wan, Y. & Liu, D. 2009. EoArchean crustal growth in west Greenland (Itsaq Gneiss Complex) and in north-eastern China (Anshan area): review and synthesis. In Earth Accretionary Systems in Space and Time (eds Cawood, P. A. & Kröner, A.), pp. 127–54. Geological Society of London, Special Publication no. 318.Google Scholar
Pearce, J. A. & Peate, D. W. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences 23, 251–85.Google Scholar
Qayyum, M., Niem, A. R. & Lawrence, R. D. 1996. Newly discovered Paleogene deltaic sequence in Katawaz Basin, Pakistan, and its tectonic implications. Geology 24, 835–8.Google Scholar
Rao, D. R., Rai, H. & Kumar, J. S. 2004. Origin of oceanic plagiogranite in the Nidar ophiolitic sequence of eastern Ladakh, India. Current Science 87, 9991005.Google Scholar
Rapp, R. P., Shimizu, N. & Norman, M. D. 2003. Growth of early continental crust by partial melting of eclogite. Nature 425, 605–9.Google Scholar
Robinson, P. T., Malpas, J., Dilek, Y. & Zhou, M. 2008. The significance of sheeted dike complexes in ophiolites. GSA Today 18, 410.Google Scholar
Rollinson, H. 2008. Ophiolitic trondhjemites: a possible analogue for Hadean felsic “crust.” Terra Nova 20, 364–69.Google Scholar
Rollinson, H. 2009. New models for the genesis of plagiogranites in the Oman Ophiolite. Lithos 112, 603–14.Google Scholar
Rollinson, H. 2014. Plagiogranites from the mantle section of the Oman Ophiolite: models for early crustal evolution. In Tectonic Evolution of the Oman Mountains (eds Rollinson, H. R., Searle, M. P., Abbasi, I. A., Al-Lazki, A. I. & Kindi, M. H. Al), pp. 247–61. Geological Society of London, Special Publication no. 392.Google Scholar
Samson, S. D., Inglis, J. D., D'Lemos, R. S., Admou, H., Blichert-Toft, J. & Hefferan, K. 2004. Geochronological, geochemical, and Nd-Hf isotopic constraints on the origin of Neoproterozoic plagiogranites in the Tasriwine Ophiolite, Anti-Atlas orogen, Morocco. Precambrian Research 135, 133–47.Google Scholar
Sawada, Y., Nagao, K., Siddiqui, R. H. & Khan, S. R. 1995. K-Ar ages of the Mesozoic igneous and metamorphic rocks from the Muslim Bagh area, Pakistan. Proceedings of Geoscience Colloquium 12, 7390.Google Scholar
Sen, C. & Dunn, T. 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contributions to Mineralogy and Petrology 117, 394409.Google Scholar
Shaw, D. M. 1970. Trace element fractionation during anatexis. Geochimica et Cosmochimica Acta 34, 237–43.Google Scholar
Siddiqui, R. H., Aziz, A., Mengal, J. M., Hoshino, K. & Sawada, Y. 1996. Geology, petrochemistry and tectonic evolution of the Muslim Bagh Ophiolite Complex, Pakistan. Proceedings of Geoscience Colloquium 16, 1146.Google Scholar
Siddiqui, R. H., Mengal, J. M., Hoshino, K., Sawada, Y. & Brohi, I. A. 2011. Back-arc basin signatures represented by the sheeted dykes from the Muslim Bagh Ophiolite Complex, Balochistan, Pakistan. Sindh University Research Journal 43, 5162.Google Scholar
Sun, S.-S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Tilton, G. R., Hopson, C. A. & Wright, J. E. 1981. Uranium-lead isotopic ages of the Samail Ophiolite, Oman, with applications to Tethyan Ocean ridge tectonics. Journal of Geophysical Research: Solid Earth 86, 2763–75.Google Scholar
Twining, K. 1996. Origin of plagiogranite in the Troodos ophiolite, Cyprus. In Proceedings of the 9th Keck Symposium in Geology, pp. 245–8. Williamstown, MA, 1 April 1996.Google Scholar
Wolf, M. B. & Wyllie, P. J. 1994. Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time. Contributions to Mineralogy and Petrology 115, 369–83.Google Scholar
Yaliniz, M. K., Floyd, P. A. & Goncuoglu, M. C. 2000. Petrology and geotectonic significance of plagiogranite from the Sarikaraman Ophiolite (Central Anatolia, Turkey). Ofioliti 1, 31–7.Google Scholar
Zhang, C., Holtz, F., Koepke, J., Wolff, P. E., Ma, C. & Bédard, J. H. 2013. Constraints from experimental melting of amphibolite on the depth of formation of garnet-rich restites, and implications for models of Early Archean crustal growth. Precambrian Research 231, 206–17.Google Scholar
Ziaja, K., Foley, S. F., White, R. W. & Buhre, S. 2014. Metamorphism and melting of picritic crust in the early Earth. Lithos 189, 173–84.Google Scholar
Supplementary material: File

Cox et al. supplementary material

Figures S1-S3

Download Cox et al. supplementary material(File)
File 644.2 KB
Supplementary material: File

Cox et al. supplementary material

Tables S1-S3

Download Cox et al. supplementary material(File)
File 30.2 KB