Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T19:56:41.112Z Has data issue: false hasContentIssue false

Petrography and geochemistry of the siliciclastic Araba Formation (Cambrian), east Sinai, Egypt: implications for provenance, tectonic setting and source weathering

Published online by Cambridge University Press:  17 November 2015

HOSSAM A. TAWFIK*
Affiliation:
Department of Geology, Faculty of Science, Tanta University, Tanta 31527, Egypt
IBRAHIM M. GHANDOUR
Affiliation:
Department of Geology, Faculty of Science, Tanta University, Tanta 31527, Egypt Department of Marine Geology, Faculty of Marine Sciences, King Abdulaziz University, 80207 Jeddah 21589, Saudi Arabia
WATARU MAEJIMA
Affiliation:
Department of Geosciences, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558–8585, Japan
JOHN S. ARMSTRONG-ALTRIN
Affiliation:
Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad de Procesos Oceánicos y Costeros, Circuito exterior s/n, 04510 México D.F., México
ABDEL-MONEM T. ABDEL-HAMEED
Affiliation:
Department of Geology, Faculty of Science, Tanta University, Tanta 31527, Egypt
*
Author for correspondence: hossam.abdelhameed@science.tanta.edu.eg

Abstract

Combined petrographic and geochemical methods are utilized to investigate the provenance, tectonic setting, palaeo-weathering and climatic conditions of the Cambrian Araba clastic sediments of NE Egypt. The ~ 60 m thick Araba Formation consists predominantly of sandstone and mudstone interbedded with conglomerate. Petrographically the Araba sandstones are mostly sub-mature and classified as subarkoses with an average framework composition of Q80F14L6. The framework components are dominated by monocrystalline quartz with subordinate K-feldspar, together with volcanic and granitic rock fragments. XRD analysis demonstrated that clay minerals comprise mixed-layer illite/smectite (I/S), illite and smectite, with minor kaolinite. Diagenetic features of the sandstone include mechanical infiltration of clay, mechanical and chemical compaction, cementation, dissolution and replacement of feldspars by carbonate cements and clays. The modal composition and geochemical parameters (e.g. Cr/V, Y/Ni, Th/Co and Cr/Th ratios) of the sandstones and mudstones indicate that they were derived from felsic source rocks, probably from the crystalline basement of the northern fringe of the Arabian–Nubian Shield. The study reveals a collisional tectonic setting for the sediments of the Araba Formation. Palaeo-weathering indices such as the chemical index of alteration (CIA), chemical index of weathering (CIW) and plagioclase index of alteration (PIA) of the clastic sediments suggest that the source area was moderately chemically weathered. On the northern margin of Gondwana, early Palaeozoic weathering occurred under fluctuating climatic conditions.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Álvaro, J. M., Rouchy, J. M., Beschstadt, T., Boucot, A., Boyer, F., Debrenee, F., Moreno-Eiris, E., Perejón, A. & Venin, E. 2000. Evaporitic constraints on the southward drifting of western Gondwana margins during Early Cambrian times. Palaeogeography, Palaeoclimatology, Palaeoecology 160, 105–22.CrossRefGoogle Scholar
Aoudjit, H., Robert, M., Elsass, F. & Curmi, P. 1995. Detailed study of smectite genesis in granitic saprolites by analytical electron microscopy. Clay Mineralogy 30, 135–47.Google Scholar
Armstrong-Altrin, J. S. 2015. Evaluation of two multidimensional discrimination diagrams from beach and deep-sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks. International Geology Review 57, 1446–61.Google Scholar
Armstrong-Altrin, J. S., Lee, Y. I., Kasper-Zubillagaa, J. J., Carranza-Edwards, A., Garcia, D., Eby, G. N., Balaram, V. & Cruz-Ortiz, N. L. 2012. Geochemistry of beach sands along the western Gulf of Mexico, Mexico: implication for provenance. Chemie der Erde 72, 345–62.Google Scholar
Armstrong-Altrin, J. S., Lee, Y. I., Verma, S. P. & Ramasamy, S. 2004. Geochemistry of sandstones from the upper Miocene Kudankulam Formation, Southern India: implications for provenance, weathering, and tectonic setting. Journal of Sedimentary Research 74, 285–97.Google Scholar
Armstrong-Altrin, J. S., Machain-Castillo, M. L., Rosales-Hoz, L., Carranza-Edwards, A., Sanchez-Cabeza, J. A. & Ruíz-Fernández, A. C. 2015. Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis. Continental Shelf Research 95, 1526.Google Scholar
Armstrong-Altrin, J. S., Nagarajan, R., Lee, Y. I., Kasper-Zubillaga, J. J. & Córdoba-Saldaña, L. P. 2014. Geochemistry of sands along the San Nicolás and San Carlos beaches, Gulf of California, Mexico: implications for provenance and tectonic setting. Turkish Journal of Earth Sciences 23, 533–58.Google Scholar
Armstrong-Altrin, J. S., Nagarajan, R., Madhavaraju, J., Rosales-Hoz, L., Lee, Y. I., Balaram, V., Cruz-Martinez, A. & Avila-Ramirez, G. 2013. Geochemistry of the Jurassic and upper Cretaceous shales from the Molango Region, Hidalgo, Eastern Mexico: implications for source-area weathering, provenance, and tectonic setting. Comptes Rendus Geosciences 345,185202.Google Scholar
Armstrong-Altrin, J. S. & Verma, S. P. 2005. Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sedimentary Geology 177, 115–29.Google Scholar
Asiedu, D. K., Suzuki, S., Nogami, K. & Shibata, T. 2000. Geochemistry of Lower Cretaceous sediments, Inner Zone of Southwest Japan: constraints on provenance and tectonic environment. Geochemical Journal 34, 155–73.Google Scholar
Avigad, D., Gerdes, A., Morag, N. & Bechstädt, T. 2012. Coupled U–Pb–Hf of detrital zircons of Cambrian sandstones from Morocco and Sardinia: implications for provenance and Precambrian crustal evolution of North Africa. Gondwana Research 21, 690703.Google Scholar
Avigad, D., Sandler, A., Kolodner, K., Stern, R. J., McWilliams, M., Miller, N. & Beyth, M. 2005. Mass-production of Cambro-Ordovician quartz-rich sandstone as a consequence of chemical weathering of Pan-African terranes: environmental implications. Earth and Planetary Science Letters 240, 818–26.Google Scholar
Bellini, E. & Massa, D. 1980. A stratigraphic contribution to the Paleozoic of the southern basins of Libya. In The Geology of Libya (eds Salem, M. & Busrevil, M.), pp. 356. London: Academic Press.Google Scholar
Bhatia, M. R. 1983. Plate tectonics and geochemical composition of sandstones. Journal of Geology 91, 611–27.Google Scholar
Blatt, H., Middleton, G. & Murray, R. 1980. Origin of Sedimentary Rocks. Prentice-Hall, 768 pp.Google Scholar
Cao, J., Wu, M., Chen, Y., Hu, K., Bian, L., Wang, L. & Zhang, Y. 2012. Trace and rare earth element geochemistry of Jurassic mudstones in the northern Qaidam Basin, northwest China. Chemie der Erde 72, 245–52.Google Scholar
Chuhan, F. A., Bjørlykke, K. & Lowery, C. 2000. The role of provenance in illitization of deeply buried reservoir sandstones from Haltenbanken and North Viking Graben, offshore Norway. Marine and Petroleum Geology 17, 673–89.Google Scholar
Cullers, R. L. 2000. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithosphere 51, 181203.Google Scholar
Das, B. K., Al-Mikhlafi, A. S. & Kaur, P. 2006. Geochemistry of Mansar lake sediments, Jammu, India: implication for source-area weathering, provenance, and tectonic setting. Journal of Asian Earth Sciences 26, 649–68.CrossRefGoogle Scholar
De Ros, L. F. 1998. Heterogeneous generation and evolution of diagenetic quartzarenites in the Silurian–Devonian Fumas Formation of the Paran Basin, southern Brazil. Sedimentary Geology 116, 99128.CrossRefGoogle Scholar
Dickinson, W. R., Beard, L. S., Brakenridge, G. R., Erjavec, J. L., Ferguson, R. C., Inman, K. F., Knepp, R. A., Lindberg, F. A. & Ryberg, P. T. 1983. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin 94, 222–35.Google Scholar
Dickinson, W. R. & Suczek, C. A. 1979. Plate tectonics and sandstone compositions. American Association of Petroleum Geologists Bulletin 63, 2164–82.Google Scholar
El Shahat, A. & Kora, M. 1986. Petrology of the Early Paleozoic rocks of Um Bogma area, Sinai. Mansoura Science Bulletin 13, 151–84.Google Scholar
Etemad-Saeed, N., Hosseini-Barzi, M. & Armstrong-Altrin, J. S. 2011. Petrography and geochemistry of clastic sedimentary rocks as evidences for provenance of the Lower Cambrian Lalun Formation, Posht-e-badam block, Central Iran. Journal of African Earth Sciences 61, 142–59.CrossRefGoogle Scholar
Etemad-Saeed, N., Hosseini-Barzi, M., Edabi, M. H., Sadeghi, A. & Houshmandzadeh, A. 2015. Provenance of Neoproterozoic sedimentary basement of northern Iran, Kahar Formation. Journal of African Earth Sciences 111, 5475.Google Scholar
Fedo, C. M., Nesbitt, H. W. & Young, G. M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23, 921–4.2.3.CO;2>CrossRefGoogle Scholar
Floyd, P. A., Shail, R., Leveridge, B. E. & Franke, W. 1991. Geochemistry and provenance of Rhenohercynian synorogenic sandstones: implications for tectonic environment discrimination. In Developments in Sedimentary Provenance Studies (eds Morton, A. C., Todd, S. P. & Haughton, P. D. W.), pp. 173–88. Geological Society of London, Special Publication no. 57.Google Scholar
Ghandour, I. M., Tawfik, H. A., Maejima, W. & Abdel-Hameed, A. T. 2013. Sedimentary facies and sequence stratigraphy of the Cambrian Araba Formation, Gebel Somr El-Qaa’a, North Wadi Qena, Egypt. Neues Jahrbuch für Geologie und Paläontologie 268, 149–74.Google Scholar
Ghienne, J.-F., Boumendjel, K., Paris, F., Videt, B., Racheboeuf, P. & Salem, H. A. 2007. The Cambrian–Ordovician succession in the Ougarta Range (western Algeria, North Africa) and interference of the Late Ordovician glaciations on the development of the Lower Paleozoic transgression on northern Gondwana. Bulletin of Geosciences 82, 183214.Google Scholar
Harnois, L. 1988. The CIW index: a new chemical index of weathering. Sedimentary Geology 55, 319–22.CrossRefGoogle Scholar
Herron, M. M. 1988. Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology 58, 820–9.Google Scholar
Hiscott, R. N. 1984. Provenance of deep-water sandstones, Tourelle Formation, Quebec, and implications for the initiation of the Taconic orogeny. Canadian Journal of Earth Sciences 15, 1579–97.Google Scholar
Issawi, B. & Jux, U. 1982. Contributions to the stratigraphy of the Palaeozoic rocks in Egypt. Geological Survey of Egypt 64, 28.Google Scholar
Johnson, P. R., Andresen, A., Collins, A. S., Fowler, A. R., Fritz, H., Ghebreab, W., Kusky, T. & Stern, R. J. 2011. Late Cryogenian–Ediacaran history of the Arabian-Nubian Shield: a review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. Journal of African Earth Sciences 61, 167232.Google Scholar
Keeley, M. L. 1989. The Paleozoic history of the Western Desert of Egypt. Basin Research 2, 3548.CrossRefGoogle Scholar
Knox, R. W. O.'B., Soliman, M. F. & Essa, M. A. 2011. Heavy mineral stratigraphy of Palaeozoic and Mesozoic sandstones of southwestern Sinai, Egypt: a reassessment. GeoArabia 16, 3164.CrossRefGoogle Scholar
Kordi, M., Turner, B. & Salem, A. M. 2011. Linking diagenesis to sequence stratigraphy in fluvial and shallow marine sandstones: evidence from the Cambrian–Ordovician lower sandstone unit in southwestern Sinai, Egypt. Marine and Petroleum Geology 28, 1554–71.Google Scholar
Kröner, A. & Stern, R. J. 2004. Pan-African orogeny. Encyclopedia of Geology 1, 112.Google Scholar
Lloyd, J., 1968. The hydrogeology of the southern desert of Jordan. In Sandstone Aquifer of Jordan, pp. 53. U.N.D.P. Mission Report.Google Scholar
Loi, A. & Dabard, M. P. 1997. Zircon typology and geochemistry in the paleogeographic reconstruction of the Late Ordovician of Sardinia (Italy). Journal of Sedimentary Geology 112, 263–79.Google Scholar
Madhavaraju, J., Ramasamy, S., Ruffell, A. & Mohan, S. P. 2002. Clay mineralogy of the Late Cretaceous and early Tertiary successions of the Cauvery Basin (southeastern India): implications for sediment source and palaeoclimates at the K/T boundary. Cretaceous Research 23, 153–63.CrossRefGoogle Scholar
McBride, E. F. 1963. Classification of common sandstones. Journal of Sedimentary Petrology 33, 664–9.Google Scholar
McBride, E. F. 1977. Secondary porosity – importance in sandstone reservoirs in Texas. Gulf Coast Association of Geological Societies Transactions 27, 121–2.Google Scholar
Moghazi, A. M. 2003. Geochemistry and petrogenesis of a high-K calcalkaline Dokhan volcanic suite. South Safaga area, Egypt: the role of late Neoproterozoic crustal extension.Precambrian Research 125, 116–78.Google Scholar
Moraes, M. A. S. & De Ros, L. F. 1990. Infiltrated clays in fluvial Jurassic sandstones of Reconcavo basin, Northeastern Brazil. Journal of Sedimentary Petrology 6, 809–19.Google Scholar
Nesbitt, H. W. & Young, G. M. 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta 48, 1523–34.Google Scholar
Nesbitt, H. W. & Young, G. M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–7.CrossRefGoogle Scholar
Oelkers, E. H., Bjørkum, P. A. & Murphy, W. M. 1992. The mechanism of porosity reduction, stylolite development and quartz cementation in North Sea sandstones. In Water–Rock Interaction (eds Kharaka, Y. K. & Maest, A. S.), pp. 1183–86. Rotterdam: Balkema.Google Scholar
Omara, S. 1972. An Early Cambrian outcrop in southwestern Sinai, Egypt. Neues Jahrbuch für Geologie und Paläontologie 5, 306–14.Google Scholar
Osae, S., Asiedu, D. K., Banoeng-Yakubo, B., Koeberl, C. & Dampare, S. B. 2006. Provenance and tectonic setting of Late Proterozoic Buem sandstones of southeastern Ghana: evidence from geochemistry and detrital modes. Journal of African Earth Sciences 44, 8596.Google Scholar
Powell, C. Mc. A., Preiss, W. V., Gatehouse, C. G., Krapez, B. & Li, Z. X. 1994. South Australian record of a Rodinian epicontinental basin and its mid-Neoproterozoic breakup to form the Palaeo-Pacific Ocean. Tectonophysics 237, 113–40.Google Scholar
Price, J. R. & Velbel, M. A. 2003. Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology 202, 397416.Google Scholar
Roser, B. P. & Korsch, R. J. 1986. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology 94, 635–50.Google Scholar
Roser, B. P. & Korsch, R. J. 1988. Provenance signature of sandstone-mudstone suite determined using discriminant function analysis of major element data. Chemical Geology 67, 119–39.Google Scholar
Ryan, K. M. & Williams, D. M. 2007. Testing the reliability of discrimination diagrams for determining the tectonic depositional environment of ancient sedimentary basins. Chemical Geology 242, 103–25.Google Scholar
Ryu, I. & Niem, A. R. 1999. Sandstone diagenesis, reservoir potential, and sequence stratigraphy of the Eocene Tyee basin, Oregon. Journal of Sedimentary Research 69, 384–93.Google Scholar
Said, M. & El Kelani, A. 1988. Contribution to the geology of southeast Sinai. 26th Annual Meeting of Geological Society of Egypt, Cairo, pp. 30–1.Google Scholar
Sandler, A., Teutsch, N. & Avigad, D. 2012. Sub-Cambrian pedogenesis recorded in weathering profiles of the Arabian-Nubian Shield. Sedimentology 59, 1305–20.Google Scholar
Schöner, R. & Gaupp, R. 2005. Diagenetic mineral reactions influenced by hydrocarbon fluids: evidence from deeply buried red bed reservoirs of the Central European Basin System. American Association of Petroleum Geologists Annual Convention and Exhibition, Calgary, Canada, Abs. #90039.Google Scholar
Stern, R. J. 1994. Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for consolidation of Gondwanaland. Annual Review of Earth and Planetary Sciences 22, 319–51.CrossRefGoogle Scholar
Sullivan, M. D., Haszeldine, R. S., Boyce, A. J., Rogers, G. & Fallick, A. E. 1994. Late anhydrite cements mark basin inversion; isotopic and formation water evidence, Rotliegend Sandstone, North Sea. Marine and Petroleum Geology 11, 4654.Google Scholar
Suttner, L. J. & Dutta, P. K. 1986. Alluvial sandstone composition and paleoclimate, I. framework mineralogy. Journal of Sedimentary Petrology 56, 329–45.Google Scholar
Tawfik, H. A., Ghandour, I. M., Maejima, W. & Abdel-Hameed, A. T. 2010. Reservoir heterogeneity in the Cambrian sandstones: a case study from the Araba Formation, Gulf of Suez Region, Egypt. Journal of Geoscience, Osaka City University 53, 129.Google Scholar
Tawfik, H. A., Ghandour, I. M., Maejima, W. & Abdel-Hameed, A. T. 2011. Petrography and geochemistry of the Lower Paleozoic Araba Formation, northern Eastern Desert, Egypt: implications for provenance, tectonic setting and weathering signature. Journal of Geoscience, Osaka City University 54, 116.Google Scholar
Tawfik, H. A., Ghandour, M. I., Maejima, W. & Abdel-Hameed, A. T. 2012. Petrochemistry of the Lower Cambrian Araba Formation, Taba Area, East Sinai, Egypt. American Association of Petroleum Geologists Annual Convention and Exhibition, Long Beach, California, Abs. #50655.Google Scholar
Taylor, S. R. & McLennan, S. M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 312 pp.Google Scholar
Verma, S. P. & Armstrong-Altrin, J. S. 2013. New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology 355, 117–33.Google Scholar
Weissbrod, T. & Nachmias, J. 1987. Stratigraphic significance of heavy minerals in the Late Precambrian–Mesozoic clastic sequence (Nubian Sandstone) in the near east. Sedimentary Geology 47, 263–91.Google Scholar
Weissbrod, T. & Perath, I. 1990. Criteria for the recognition and correlation of sandstone in the Precambrian and Paleozoic-Mesozoic clastic sequence in the near east. Journal of African Earth Sciences 10, 253–70.Google Scholar
Zaid, S. M. 2015. Geochemistry of sandstones from the Pliocene Gabir Formation, North Marsa Alam, Red Sea, Egypt: implication for provenance, weathering and tectonic setting. Journal of African Earth Sciences 102, 117.Google Scholar
Zaid, S. M., ElBadry, O., Ramadan, F. & Mohamed, M. 2015. Petrography and geochemistry of Pharaonic sandstone monuments in Tall San Al Hagr, Al Sharqiya Governorate, Egypt: implications for provenance and tectonic setting. Turkish Journal of Earth Sciences 24, 344–64.Google Scholar
Zaid, S. M. & Gahtani, F. A. 2015. Provenance, diagenesis, tectonic setting and geochemistry of Hawkesbury sandstone (Middle Triassic), southern Sydney Basin, Australia. Turkish Journal of Earth Sciences 24, 7298.Google Scholar
Zimmermann, U. & Spalletti, L. A. 2009. Provenance of the Lower Paleozoic Balcarce Formation (Tandilia System, Buenos Aires Province, Argentina): implications for paleogeographic reconstructions of SW Gondwana. Sedimentary Geology 219, 723.Google Scholar