Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-16T23:40:24.211Z Has data issue: false hasContentIssue false

Phosphatized soft tissues in bivalves from the Portland Roach of Dorset (Upper Jurassic)

Published online by Cambridge University Press:  01 May 2009

Philip R. Wilby
Affiliation:
Department of Geology, Wills Memorial Building, Queen’s Road, Bristol, BS8 1RJ, UK
Martin A. Whyte
Affiliation:
Department of Earth Sciences, Dainton Building, University of Sheffield, Sheffield, S3 7HF, UK

Abstract

Phosphatized soft tissues are preserved in abundance in the trigoniids (Bivalvia) Laevitrigonia gibbosa and Myophorella incurva from the Portland Roach (Upper Jurassic) of Dorset. Cellular structures are preserved and fossilization is almost exclusively the result of a dense coating of mineralized microbes. Phosphatized soft tissues are restricted entirely to those trigoniids whose valves remained tightly closed after death. Only in these specimens was sufficient phosphorus concentrated by the decay of their most ‘labile’ soft tissues to trigger the precipitation of apatite in and around microbes infesting their more ‘refractory’ soft tissues. The absence of fossilized soft tissues in the rest of the fauna implies that phosphatization was very taxon-specific.

Type
Rapid Communications
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, P. A., 1988 a. Soft-bodied squids from the Jurassic Oxford Clay. Lethaia 21, 403–10.CrossRefGoogle Scholar
Allison, P. A., 1988 b. Konservat-Lagerstätten: cause and classification. Paleobiology 14, 331–44.CrossRefGoogle Scholar
Atkins, D., 1937. On the ciliary mechanisms and interrelationships of lamellibranchs (Part 2). Quarterly Journal of the Microscopical Society 79, 339445.Google Scholar
Beche, H. T. de la., 1848. Presidential Address. Quarterly Journal of the Geological Society 4, 114.Google Scholar
Briggs, D. E. G., & Kear, A. J., 1993. Fossilization of softtissues in the laboratory. Science 259, 1439–42.CrossRefGoogle Scholar
Briggs, D. E. G., Kear, A. J., Martill, D. M., & Wilby, P. R., 1993. Phosphatization of soft tissues in experiments and fossils. Journal of the Geological Society, London 150, 1035–8.CrossRefGoogle Scholar
Cox, L. R., 1929. Synopsis of the Lamellibranchia of the Portland Beds of England. Proceedings of the Dorset Natural History and Archaeological Society 50,130202.Google Scholar
Cox, L. R., 1969. General features of the Bivalvia. In Treatise on Invertebrate Paleontology, Part N, volume 1, Mollusca 6, Bivalvia (eds Moore, R. C. and Teichert, C.). Geological Society of America, Inc. and University of Kansas, Kansas.Google Scholar
Fürsich, F. T., Palmer, T. J., & Goodyear, K. L., 1994. Growth and disintegration of bivalve-dominated patch reefs in the Upper Jurassic of Southern England. Palaeontology 37, 131–71.Google Scholar
Golubic, S., & Hofmann, H. J., 1976. Comparison of Holocene and Mid-precambrian Entophysalidaceae (Cyanophyta) in stromatolitic algal mats: cell division and degradation. Journal of Palaeontology 50,1074–82.Google Scholar
Hirschler, A., Lucas, J., & Hubert, J. C., 1990 a. Bacterial involvement in apatite genesis. FEMS Microbiology Ecology 73,211–20.CrossRefGoogle Scholar
Hirschler, A., Lucas, J., & Hubert, J. C., 1990 b. Apatite genesis: A biologically induced or biologically controlled mineral formation process? Geomicrobiology Journal 7, 4757.CrossRefGoogle Scholar
Hofmann, H. J., 1976. Precambrian microflora, Belcher Islands, Canada: Significance and systematics. Journal of Paleontology 50, 1040–73.Google Scholar
Lucas, J., & Prévôt, L., 1984. Apatite synthesis by bacterial activity from phosphatic organic matter and several calcium carbonates in natural freshwater and seawater. Chemical Geology 42, 101–18.CrossRefGoogle Scholar
Martill, D. M., 1988. Preservation offish in the Cretaceous of Brazil. Palaeontology 31, 118.Google Scholar
Martill, D. M., 1990. Macromolecular resolution of fossilized muscle from an elopomorph fish. Nature 346, 171–2.CrossRefGoogle Scholar
Martill, D. M., & Harper, E., 1990. Critical point drying, a technique for palaeontologists. Palaeontology 33, 423–8.Google Scholar
Martill, D. M., Wilby, P. R., & Unwin, D. M., 1990. Stripes on a pterosaur wing. Nature 346, 166.CrossRefGoogle Scholar
Martill, D. M., & Wilby, P. R., 1994. Lithified prokaryotes associated with fossil soft-tissues from the Santana Formation (Cretaceous) of Brazil, Kaupia 4, 7177.Google Scholar
Martinson, G. G., Nessov, L. A., & Strarobogatov, Ya. J., 1986. Unusual find of gill apparatus in Cretaceous Trigoniodoidea bivalve molluscs. Biulleten Moskovskogo Obshchestva Ispytatelei Prirody Otdel Geologicheskii 61, 94–7 (in Russian).Google Scholar
Mehl, J., 1990. Fossilerhaultung von kiemen bei Plesioteuthis prisca (Rüppell 1829) (Vampyromorpha, Cephalopoda) aus unterithonen Plattenkalken der Altmühlalb. Archaeopteryx 8, 7791.Google Scholar
Nathan, Y., & Sass, E., 1981. Stability relations of apatites and calcium carbonates. Chemical Geology 34, 103–11.CrossRefGoogle Scholar
Ruttenberg, K. C., & Berner, R. A., 1993. Authigenic apatite formation and burial in sediments from nonupwelling, continental margin environments. Geochimica et Cosmochimica Acta 57, 9911007.CrossRefGoogle Scholar
Schmitz, M., 1991. Die Koprolithen mitteleozäner Vertebraten aus der Grube Messel bei Darmstadt. Courier Forschungsinstitut Senckenberg 137, 199 pp.Google Scholar
Schultze, H-P., 1989. Three-dimensional muscle preservation in Jurassic fishes of Chile. Revista Geológica de Chile 16, 183215.Google Scholar
Soudry, D., 1992. Primary bedded phosphorites in the Campanian Mishash Formation, Negev, southern Israel. Sedimentary Geology 80, 7788.CrossRefGoogle Scholar
Soudry, D., & Lewy, Z., 1988. Microbially influenced formation of phosphate nodules and megafossil moulds (Negev, southern Israel). Palaeogeography, Palaeoclimatology, Palaeoecology 64, 1534.CrossRefGoogle Scholar
Vinodradov, A. P., 1953. The elementary chemical composition of marine organisms. Sears Foundation for Marine Research, Yale University, Memoir II, Denmark.Google Scholar
Wilby, P. R., 1993. The role of organic matrices in postmortem phosphatization of soft-tissues. Kaupia 2, 99113.Google Scholar
Wilby, P. R., & Martill, D. M., 1992. Fossil fish stomachs: a microenvironment for exceptional preservation. Historical Biology 6, 2536.CrossRefGoogle Scholar