Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T06:24:23.571Z Has data issue: false hasContentIssue false

Plagiogranites in the Coolac ophiolite suite, New South Wales, Australia

Published online by Cambridge University Press:  01 May 2009

P. M. Ashley
Affiliation:
Minerals Department, Esso Australia Ltd, G.P.O. Box 4047, Sydney, N.S.W. 2001, Australia
B. J. Franklin
Affiliation:
Department of Applied Geology, The N.S.W. Institute of Technology, Sydney, N.S.W. 2007, Australia
A. S. Ray
Affiliation:
A. C. I. Technical Centre Pty Ltd, 813 South Dowling Street, Waterloo, N.S.W. 2017, Australia

Summary

Plagiogranites occur mainly as intrusive bodies and tectonic inclusions within mafic and ultramafic members of the Coolac ophiolite suite. Quartz diorites and trondhjemites appear to represent localized late-stage felsic differentiates of subalkaline tholeiitic magma, with their formation dominantly controlled by fractionation of hornblende and plagioclase. Albitites are interpreted as altered equivalents of quartz diorites and trondhjemites. Chemical data, while emphasizing the similarity of these rocks to ‘oceanic plagiogranite', also indicate that variation in the latter may be broader than previously defined. The Coolac rocks show less marked Fe-enrichment, higher Ni and Cr, and lower Y and Zr than many ophiolitic plagiogranites. These data are consistent with weak calc-alkaline tendencies demonstrated in the Coolac ophiolite suite.

Type
Articles
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashley, P. M. 1973. Petrogenesis of sulphide-bearing reaction zones in the Coolac ultramafic belt, New South Wales, Australia. Miner. Deposita 8, 370–8.CrossRefGoogle Scholar
Ashley, P. M. 1974. Stratabound pyritic sulphide occurrences in an ophiolite rock assemblage near Tumut, New South Wales. J. geol. Soc. Aust. 21, 5362.CrossRefGoogle Scholar
Ashley, P. M., Brown, P. F., Franklin, B. J., Ray, A. S. & Scheibner, E. 1979. Field and geochemical characteristics of the Coolac ophiolite suite and its possible origin in a marginal sea. J. geol. Soc. Aust. 26, 4560.CrossRefGoogle Scholar
Barker, D. S. 1970. Compositions of granophyre, myrmekite and graphic granite. Bull. geol. Soc. Am. 81, 3339–50.CrossRefGoogle Scholar
Barker, F., Millard, H. T. Jr & Knight, R. J. 1979. Reconnaissance geochemistry of Devonian island-arc volcanic intrusive rocks, West Shasta district, California. In Trondhjemites, Dacites and Related Rocks (ed. F., Barker), pp. 531–46. Amsterdam: Elsevier.CrossRefGoogle Scholar
Basden, H. 1982. Preliminary report on the geology of the Tumut 1: 100,000 sheet area. Q. Notes geol. Surv. N.S.W. 46, 118.Google Scholar
Beccaluva, L., Ohnenstetter, D., Ohnenstetter, M. & Venturelli, G. 1977. The trace element geochemistry of Corsican ophiolites. Contr. Mineral. Petrol. 64, 1131.CrossRefGoogle Scholar
Brown, E. H., Bradshaw, J. Y. & Mustoe, G. E. 1979. Plagiogranite and keratophyre in ophiolite on Fidalgo Island, Washington. Bull. geol. Soc. Am. 90, 493507.2.0.CO;2>CrossRefGoogle Scholar
Brown, P. F. 1979. A sheeted dyke complex within the Coolac ophiolite, southeastern New South Wales. J. geol. Soc. Aust. 26, 411–17.CrossRefGoogle Scholar
Chappell, B. W. 1978. Granitoids from the Moonbi district, New England batholith, eastern Australia. J. geol. Soc. Aust. 25, 267–83.CrossRefGoogle Scholar
Coleman, R. G. 1967. Low temperature reaction zones and alpine ultramafic rocks of California, Oregon and Washington. Bull. U.S. geol. Surv. 1247.Google Scholar
Coleman, R. G. 1977. Ophiolites. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Coleman, R. G. & Donato, M. M. 1979. Oceanic plagiogranite revisited. In Trondhjemites, Dacites and Related Rocks (ed. F., Barker), pp. 149–68. Amsterdam: Elsevier.CrossRefGoogle Scholar
Coleman, R. G. & Peterman, Z. E. 1975. Oceanic plagiogranite. J. geophys. Res. 80, 1099–108.CrossRefGoogle Scholar
Dixon, S. & Rutherford, M. J. 1979. Plagiogranites as late-stage immiscible liquids in ophiolite and mid-ocean ridge suites: an experimental study. Earth Plan. Sci. Letts. 45, 4560.CrossRefGoogle Scholar
Ewart, A., Brothers, R. N. & Mateen, A. 1977. An outline of the geology and geochemistry, and the possible petrogenetic evolution of the volcanic rocks of the Tonga-Kermadec-New Zealand island arc. J. Volcan. Geotherm. Res. 2, 205–50.Google Scholar
Gerlach, D. C., Avé Lallemant, H. G. & Leeman, W. P. 1981. An island arc origin for the Canyon Mountain ophiolite complex, eastern Oregon, U.S.A. Earth Plan. Sci. Letts. 53, 255–65.CrossRefGoogle Scholar
Gerlach, D. C., Leeman, W. P. & Avé Lallemant, H. G. 1981. Petrology and geochemistry of plagiogranite in the Canyon Mountain ophiolite, Oregon. Contr. Mineral. Petrol. 77, 8292.Google Scholar
Hine, R., Williams, I. S., Chappell, B. W. & White, A. J. R. 1978. Contrasts between I- and S-type granitoids of the Kosciusko batholith. J. geol. Soc. Aust. 25, 219–34.CrossRefGoogle Scholar
Ishizaka, K. & Yanagi, T. 1975. Occurrence of oceanic plagiogranites in the Older Tectonic Zone, southwest Japan. Earth Plan. Sci. Letts. 27, 371–7.Google Scholar
Jakes, P. & White, A. J. R. 1972. Major and trace element abundances in volcanic rocks of orogenic areas. Bull. geol. Soc. Am. 83, 2939.CrossRefGoogle Scholar
James, R. S. & Hamilton, D. L. 1969. Phase relations in the system NaAlSi3O8-KAlSi3O8-CaAl2Si2O8-SiO2 at 1 kb H2O vapour pressure. Contr. Mineral. Petrol. 21, 111–41.CrossRefGoogle Scholar
Kay, R. & Senechal, R. G. 1976. The rare earth geochemistry of the Troodos ophiolite. J. geophys. Res. 81, 964–70.Google Scholar
Leake, B. E. 1978. Nomenclature of amphiboles. Am. Miner. 63, 1023–52.Google Scholar
Malpas, J. 1979. Two contrasting trondhjemite associations from transported ophiolites in western Newfoundland: initial report. In Trondhjemites, Dacites and Related Rocks (ed. F., Barker), pp. 465–87. Amsterdam: Elsevier.CrossRefGoogle Scholar
Moores, E. M. & Vine, F. J. 1971. Troodos Massif, Cyprus and other ophiolites as oceanic crust: evaluation and implications. Phil. Trans. R. Soc. Lond. Ser. A. 268, 433–66.Google Scholar
Payne, J. G. & Strong, D. F. 1979. Origin of the Twillingate trondhjemite, north-central Newfoundland: partial melting in the roots of an island arc. In Trondhjemites, Dacites and Related Rocks (ed. F., Barker), pp. 489516. Amsterdam: Elsevier.CrossRefGoogle Scholar
Phelps, D. 1979. Petrology, geochemistry and origin of the Sparta quartz diorite-trondhjemite complex, northeastern Oregon. In Trondhjemites, Dacites and Related Rocks (ed. F., Barker), pp. 547–79. Amsterdam: Elsevier.Google Scholar
Phelps, D. & Avé Lallemant, H. G. 1980. The Sparta ophiolite complex, northeast Oregon: a plutonic equivalent to low K2O island-arc volcanism. Am. J. Sci. 280A, 345–58.Google Scholar
Saunders, A. D., Tarney, J., Stern, C. R. & Dalziel, I. W. D. 1979. Geochemistry of Mesozoic marginal basin floor igneous rocks from southern Chile. Bull. geol. Soc. Am. 90, 237–58.Google Scholar
Scheibner, E. 1973. A plate tectonic model of the Palaeozoic tectonic history of New South Wales. J. geol. Soc. Aust. 20, 405–26.CrossRefGoogle Scholar
Serri, G. 1980. Chemistry and petrology of gabbroic complexes from the northern Apennine ophiolites. In Proceedings of the International Ophiolite Symposium, Nicosia, pp. 296313. Cyprus geol. Surv. Dept.Google Scholar
Streckeisen, A. 1973. Plutonic rocks. Classification and nomenclature recommended by the IUGS Subcommission on the systematics of igneous rocks. Geotimes 09 1973, 2630.Google Scholar
Thayer, T. P. & Himmelberg, G. R. 1968. Rock succession in the alpine-type mafic complex at Canyon Mountain, Oregon. 23rd Int. geol. Congr., Prague. 1, 175–86.Google Scholar
Upadhyay, H. D. & Neale, E. R. W. 1979. On the tectonic regimes of ophiolite genesis. Earth Plan. Sci. Letts. 43, 93102.CrossRefGoogle Scholar