Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T04:11:37.489Z Has data issue: false hasContentIssue false

Review of flanking structures in meso- and micro-scales

Published online by Cambridge University Press:  26 February 2014

SOUMYAJIT MUKHERJEE*
Affiliation:
Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, Maharashtra, India

Abstract

A variety of host-fabric elements (HE) cut by cross-cutting elements (CE) in rocks defines flanking structures (FS) on mesoscopic and microscopic scales. There has been renewed interest in studying and classifying the FS for their morphologies, useful as shear sense indicators and geneses. Existing non-genetic morphologic parameters for the FS are reviewed, and two new classification schemes are presented. One of these is based on the nature of the CE and whether HE penetrates it. The other scheme takes account of all the potential combinations of drag/no drag and slip/no slip of the HE. Deciphering the shear sense of the rock body from FS is complicated because the angular relationship between the CE and the primary shear planes might be opposite to what is found between S- and C- ductile shear fabrics. Further, single CEs can curve and several similar FS occur in reverse forms. As with mineral fish, the shape asymmetries of microscopic CEs indicate the shear sense. Conjugate FS (with non-parallel CEs) with interfering perturbation fields around the CEs are more reliable shear-sense indicators than FS with single CE. During low but increasing bulk strains, FS may evolve from one type to another, e.g. from a- to s-type. At high strain, FS can resemble intrafolial or sheath fold. Whether the drag is normal or reverse depends fundamentally on the initial angle between the HE and the CE and the relative magnitudes of throw and vertical separation.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arslan, A., Koehn, D., Passchier, C. & Sachau, T. 2012. The transition from single layer to foliation boudinage: a dynamic modelling approach. Journal of Structural Geology 42, 118–26.CrossRefGoogle Scholar
Arslan, A., Passchier, C. W. & Koehn, D. 2008. Foliation boudinage. Journal of Structural Geology 30, 291309.CrossRefGoogle Scholar
Blenkinsop, T. 2000. Deformation Microstructures and Mechanisms in Minerals and Rocks. New York: Kluwer Academic Publisher.Google Scholar
Bons, P. D., Druguet, E., Castaño, L-M. & Elberg, M. A. 2008. Finding what is not there anymore: Recognizing missing fluid and magma. Geology 36, 851–4.CrossRefGoogle Scholar
Brandes, C. & Winsemann, J. 2013. Soft-sediment deformation structures in NW Germany caused by Late Pleistocene seismicity. International Journal of Earth Sciences 102, 2255–74.Google Scholar
Coelho, S., Passchier, C. & Grasemann, B. 2005. Geometric description of flanking structures. Journal of Structural Geology 27, 597606.Google Scholar
Corvino, A.F. 2010. Flanking folds and boudins in the Prince Charles Mountains. Journal of Structural Geology 32 (1), doi: http://dx.doi.org/10.1016/j.jsg.2008.01.014.CrossRefGoogle Scholar
Davis, G., Reynolds, S. J. & Kluth, C. F. 2012. Structural Geology of Rocks and Regions. New York: John Wiley & Sons.Google Scholar
Deb, M. 1980. Genesis and metamorphism of two stratiform massive sulphide deposits at Ambaji and Deri in the Precambrian of western India. Economic Geology 75, 572–91.CrossRefGoogle Scholar
De Margerie, E. & Heim, A. 1888. Dislocations de L'ecorce Terrestre. Essai de Definition et de Nomenclature. Zürich: Verlag von J Wurster & Company, 154 pp.Google Scholar
Exner, U. & Dabrowski, M. 2010. Monoclinic and triclinic 3D flanking structures around elliptical cracks. Journal of Structural Geology 32, 2009–21.Google Scholar
Exner, U. & Grasemann, B. 2010. Deformation bands in gravels: displacement gradients and heterogeneous strain. Journal of the Geological Society, London 167, 905–13.CrossRefGoogle Scholar
Exner, U., Grasemann, B. & Mancktelow, N. S. 2006. Multiple faults in ductile simple shear: analog modeling of flanking structure systems. In Analogue and Numerical Modeling of Crustal-Scale Processes (eds Buiter, S. J. H. & Schreurs, G.), 381–95. Geological Society of London, Special Publication no. 253.Google Scholar
Exner, U., Mancktelow, N. S. & Grasemann, B. 2004. Progressive development of s-type flanking folds in simple shear. Journal of Structural Geology 26, 2191–201.Google Scholar
Ferrill, D. A., Morris, A. P., Sims, D. W., Waiting, D. J. & Hasegawa, S. 2005. Development of synthetic layer dip adjacent to normal faults. In Faults and Fluid Flow, and Petroleum Traps (eds Sorkhabi, R. and Tsuji, Y.), pp. 125–38. AAPG, Memoir 85.Google Scholar
Fletcher, R. C. 2009. Deformable, rigid, and inviscid elliptical inclusions in a homogeneous incompressible anisotropic viscous fluid. Journal of Structural Geology 31, 382–7.CrossRefGoogle Scholar
Fossen, H. 2010. Structural Geology. Cambridge: Cambridge University Press.Google Scholar
Gillam, B. G., Little, T. A., Smith, E. & Toy, V. G. 2013. Extensional shear bands development on the outer margin of the Alpine mylonite zone, Tatare Stream, Southern Alps, New Zealand. Journal of Structural Geology 54, 120.CrossRefGoogle Scholar
Gomez-Rivas, E., Bons, P.D., Griera, A., Carreras, J., Druguet, E. & Evans, L. 2007. Strain and vorticity analysis using small-scale faults and associated drag folds. Journal of Structural Geology 29, 1882–99.Google Scholar
Gomez-Rivas, E. & Griera, A. 2012. Shear fractures in anisotropic ductile materials: an experimental approach. Journal of Structural Geology 34, 6176.Google Scholar
Goscombe, B., Hand, M. & Gray, D. 2003. Structure of the Kaoko Belt, Namibia: progressive evolution of a classic transpressional orogen. Journal of Structural Geology 25, 1049–81.Google Scholar
Goscombe, B. & Passchier, C. W. 2003. Asymmetric boudins as shear sense indicators–an assessment from field data. Journal of Structural Geology 25, 575–89.Google Scholar
Goscombe, B., Passchier, C. W. & Hand, M. 2004. Boudinage classification: end-member boudin types and modified boudin structures. Journal of Structural Geology 26, 739–63.CrossRefGoogle Scholar
Goswami, T. K., Baruah, S. & Baruah, P. 2012. Flanking structures in the migmatite gneiss of the Higher Himalayan Crystallines around Tato, west Siang district, Arunachal Pradesh. National Seminar: Multidisciplinary Approach in Sedimentary Basin Studies. Technical Session II: Structures, Tectonics & Himalayan Geodynamics. Department of Applied Geology, Dibrugarh University, India. 15–16 March, 23 pp.Google Scholar
Grasemann, B., Exner, U. & Tschegg, C. 2011. Displacement length scaling of brittle faults in ductile shear. Journal of Structural Geology 33, 1650–61.CrossRefGoogle ScholarPubMed
Grasemann, B, Fritz, H. & Vannay, J.-C. 1999. Quantitative kinematic flow analysis from the Main Central Thrust Zone (NW-Himalaya, India): implications for a decelerating strain path and the extrusion of orogenic wedges. Journal of Structural Geology 21, 837–53.Google Scholar
Grasemann, B., Martel, S. & Passchier, C. 2005. Reverse and normal drag along a fault. Journal of Structural Geology 27, 9991010.CrossRefGoogle Scholar
Grasemann, B. & Stüwe, K. 2001. The development of flanking folds during simple shear and their use as kinematic indicators. Journal of Structural Geology 23, 715–24.CrossRefGoogle Scholar
Grasemann, B., Stüwe, K. & Vannay, J-C. 2003. Sense and non-sense of shear in flanking structures. Journal of Structural Geology 25, 1934.Google Scholar
Grasemann, B. & Wiesmayr, G. 2006. Three-dimensional fault drag. Geophysical Research Abstracts 8, 08982.Google Scholar
Hills, E. S. 1953. Elements of Structural Geology. Bombay: Asia Publishing House, pp. 167, 180.Google Scholar
Hudec, M. R. & Jackson, M. P. A. 2007. Terra Infirma: Understanding salt tectonics. Earth-Science Review 82, 128.CrossRefGoogle Scholar
Hudleston, P. J. 1989. The association of folds and veins in shear zones. Journal of Structural Geology 11, 949–57.CrossRefGoogle Scholar
Hudleston, P. J. & Treagus, S. J. 2010. Information from folds: A review. Journal of Structural Geology 32, 2042–71.CrossRefGoogle Scholar
Jain, A. K. & Mukherjee, S. 2009. Cover photo: a flanking microstructure. Himalayan Geology 30, cover photo.Google Scholar
Katz, O. & Reches, Z. 2006. Reverse drag: post-failure deformation along existing faults. Israel Journal of Earth Sciences 55, 4353.CrossRefGoogle Scholar
Kocher, T. & Mancktelow, N. S. 2005. Dynamic reverse modeling of flanking structures: a source of quantitative information. Journal of Structural Geology 27, 1346–54.Google Scholar
Kocher, T. & Mancktelow, N. S. 2006. Flanking structure development in anisotropic viscous rock. Journal of Structural Geology 28, 1139–45.Google Scholar
Koehn, D. & Sachau, T. 2012. Two-dimensional numerical modeling of fracturing and shear band development in glacier fronts. Journal of Structural Geology, published online 16 November 2012. doi: http://dx.doi.org/10.1016/j.jsg.2012.11.002.Google Scholar
Koyi, H. A., Schmeling, H., Burchardt, S., Talbot, C., Mukherjee, S. & Sjöström, H. 2013. Shear zones between rock units with no relative movement. Journal of Structural Geology 50, 8290.CrossRefGoogle Scholar
Lohr, T., Krawczyk, C. M., Oncken, O. & Tanner, D. C. 2008. Evolution of a fault surface from 3D attribute analysis and displacement measurements. Journal of Structural Geology 30, 690700.Google Scholar
Maeder, X., Passchier, C. W. & Koehn, D. 2009. Modelling of segment structures: Boudins, bone-boudins, mullions and related single- and multiphase deformation features. Journal of Structural Geology 31, 817–30.CrossRefGoogle Scholar
Mandal, N., Samanta, S. K. & Chakraborty, C. 2002. Flow and strain patterns at the terminations of tapered shear zones. Journal of Structural Geology 24, 297309.CrossRefGoogle Scholar
Mandl, G. 2000. Faulting in Brittle Rocks: An Introduction to the Mechanism of Tectonic Faults. Berlin: Springer, 258 pp.Google Scholar
Mukherjee, S. 2010 a. Structures at meso and micro-scales in the Sutlej section of the Higher Himalayan Shear Zone in Himalaya. e-Terra 7, 127.Google Scholar
Mukherjee, S. 2010 b. Microstructures of the Zanskar Shear Zone. Earth Science India 3, 927.Google Scholar
Mukherjee, S. 2011 a. Flanking microstructures from the Zanskar Shear Zone, NW Indian Himalaya. YES Network Bulletin 1, 21–9.Google Scholar
Mukherjee, S. 2011 b. Mineral fish: their morphological classification, usefulness as shear sense indicators and genesis. International Journal of Earth Sciences 100, 1303–14.Google Scholar
Mukherjee, S. 2012. Simple shear is not so simple! Kinematics and shear senses in Newtonian viscous simple shear zones. Geological Magazine 149, 819–26.Google Scholar
Mukherjee, S. 2013 a. Deformation Microstructures in Rocks. Berlin: Springer, pp. 1111.CrossRefGoogle Scholar
Mukherjee, S. 2013 b. Higher Himalaya in the Bhagirathi section (NW Himalaya, India): its structures, backthrusts and extrusion mechanism by both channel flow and critical taper mechanisms. International Journal of Earth Sciences 102, 1851–70.Google Scholar
Mukherjee, S. 2013 c. Channel flow extrusion model to constrain dynamic viscosity and Prandtl number of the Higher Himalayan Shear Zone. International Journal of Earth Sciences 102, 1811–35.CrossRefGoogle Scholar
Mukherjee, S. 2013 d. Atlas of Shear Zone Structures in Meso-scale. Cham: Springer.Google Scholar
Mukherjee, S. & Biswas, R. 2013. Kinematics of horizontal simple shear zones of concentric arcs (Taylor-Couette flow) with incompressible Newtonian rheology. International Journal of Earth Sciences, published online November 2013. doi: 10.1007/s00531-013-0973-6.Google Scholar
Mukherjee, S. & Koyi, H. A. 2009. Flanking microstructures. Geological Magazine 146, 517–26.Google Scholar
Mukherjee, S. & Koyi, H. A. 2010 a. Higher Himalayan Shear Zone, Zanskar Indian Himalaya: microstructural studies and extrusion mechanism by a combination of simple shear and channel flow. International Journal of Earth Sciences 99, 10831110.CrossRefGoogle Scholar
Mukherjee, S. & Koyi, H. A. 2010 b. Higher Himalayan Shear Zone, Sutlej section: structural geology and extrusion mechanism by various combinations of simple shear, pure shear and channel flow in shifting modes. International Journal of Earth Sciences 99, 1267–303.CrossRefGoogle Scholar
Mulchrone, K. F. 2007. Modelling flanking structures using deformable high axial ratio ellipses: insights into finite geometries. Journal of Structural Geology 29, 1216–228.Google Scholar
Mulchrone, K. F. & Walsh, K. 2006. The motion of a non-rigid ellipse in a general 2D deformation. Journal of Structural Geology 28, 392407.Google Scholar
Nemčok, M., Schamel, S. & Gayer, R. 2005. Thrust Belts: Structural Architecture, Thermal Regimes, and Petroleum Systems. Cambridge: Cambridge University Press, 541 pp.Google Scholar
Osmundsen, P. T., Braathen, A., Nordgulen, Ø., Roberts, D., Meyer, G. B. & Eide, E. 2003. The Devonian Nesna shear zone and adjacent gneiss-cored culminations, North– Central Norwegian Caledonides. Journal of the Geological Society, London 160, 137–50.CrossRefGoogle Scholar
Passchier, C. W. 2001. Flanking structures. Journal of Structural Geology 23, 951–62.Google Scholar
Passchier, C. W. & Coelho, S. 2006. An outline of shear sense analysis in high-grade rocks. Gondwana Research 10, 6676.CrossRefGoogle Scholar
Passchier, C., Heesakkers, V. & Coelho, S. 2008. Two mechanisms for forming flanking folds. In Making Sense of Shear (In Honour of Carol Simpson) (ed. D. De Paor). Journal of Virtual Explorer 30, paper 6.Google Scholar
Passchier, C. W., Mancktelow, N. S. & Grasemann, B. 2005. Flow perturbations: a tool to study and characterize heterogeneous deformation. Journal of Structural Geology 27, 1011–26.Google Scholar
Passchier, C. W. & Trouw, R. A. J. 2005. Microtectonics. Berlin: Springer-Verlag, pp. 154156, 160.Google Scholar
Passchier, C. W., Trouw, R. A. J., Ribeiro, A. & Paciullo, F. V. P. 2002. Tectonic evolution of the southern Kaoko belt, Namibia. Journal of African Earth Sciences 35, 6175.Google Scholar
Patel, R. C. & Kumar, Y. 2006. Late-to-post collisional brittle ductile deformation in the Himalayan orogen: evidences from structural studies in the Lesser Himalayan Crystallines, Kumaon Himalaya, India. Journal of Asian Earth Sciences 27, 735–50.CrossRefGoogle Scholar
Philpotts, A. R. & Ague, J. J. 2009. Principles of Igneous and Metamorphic Petrology. Second Edition. Cambridge: Cambridge University Press, 103 pp.Google Scholar
Platt, J. P. & Vissers, R. L. M. 1980. Extensional structures in anisotropic rocks. Journal of Structural Geology 2, 397410.Google Scholar
Rajesh, H. G. & Chetty, T. R. K. 2006. Structure and tectonics of the Achankovil Shear Zone, southern India. Gondwana Research 10, 8698.CrossRefGoogle Scholar
Ramsay, J. G. 1980. Shear zone geometry: a review. Journal of Structural Geology 2, 8399.Google Scholar
Reber, J. E., Dabrowski, M., Galland, O. & Schmid, D. M. 2013. Sheath fold morphology in simple shear. Journal of Structural Geology 53, 1526.CrossRefGoogle Scholar
Reber, J. E., Dabrowski, M. & Schmid, D. M. 2010. Are sheath folds late stage flanking structures? Geophysical Research Abstracts 12, EGU20109698.Google Scholar
Reches, Z. & Eidelman, A. 1995. Drag along faults. Tectonophysics 247, 145–56.Google Scholar
Roberts, D. & Zwaan, K. B. 2007. Marble dykes emanating from marble layers in an amphibolite-facies, multiply-deformed carbonate succession, Troms, northern Norway. Geological Magazine 144, 883–8.Google Scholar
Sartini-Rideout, C., Gillotti, J. A. & McClelland, W. C. 2006. Geology and timing of dextral strike-slip shear zones in Danmarkshavn, North-East Greenland Caledonides Geological Magazine 143, 431–46.Google Scholar
Spahić, D., Exner, U. & Grasemann, B. 2010. 3D fault drag characterization: an import tool in a fault description. Geophysical Research Abstracts 12, EGU20104127.Google Scholar
Spahić, D., Grasemann, B. & Exner, U. 2013. Identifying fault segments from 3D fault drag analysis (Vienna Basin, Austria). Journal of Structural Geology 55, 182–95.CrossRefGoogle Scholar
ten Grotenhuis, S. M., Trouw, R. A. J. & Passchier, C. W. 2003. Evolution of mica fish in mylonitic rocks. Tectonophysics 372, 121.CrossRefGoogle Scholar
Wiesmayr, G. & Grasemann, B. 2005. Sense and nonsense of shear in flanking structures with layer-parallel shortening: implications for fault-related folds. Journal of Structural Geology 27, 249–64.CrossRefGoogle Scholar
Xypolias, P. 2010. Vorticity analysis in shear zones: a review of methods and applications. Journal of Structural Geology 32, 2072–92.CrossRefGoogle Scholar