Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T00:44:26.789Z Has data issue: false hasContentIssue false

The Role of Cooling Cracks Formed at High Temperatures and of Released Gas in the Formation of Chilled Basic Margins in Net-veined Intrusions

Published online by Cambridge University Press:  01 May 2009

B. Windley
Affiliation:
Grønlands Geologiske Undersøgelse, Østenoldgade 7, Copenhagen, Denmark.

Abstract

Cooling cracks form at high temperatures when a basic magma is either viscous or crystalline and hot. It is postulated that fine-grained margins form along the fractures by release of gas through the fracture network. This takes place (a) by raising the liquidus-solidus boundary due to release of volatiles, (b) by expansion of the released gas with consequent cooling. Granitic material introduced along the fractures post-dates and may recrystallize the “chilled” margins.

Type
Articles
Copyright
Copyright © Cambridge University Press 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, E. B., 1959. Mobilisation of granophyre in Eire and sinking of olivine in Greenland. Lpool. Manchr. geol. J., 2, 143154.CrossRefGoogle Scholar
Bailey, E. B., and McCallien, W. J. 1956. Composite minor intrusions and the Slieve Gullion complex, Ireland. Lpool. Manchr. geol. J., 1, 466501.CrossRefGoogle Scholar
Barth, T. F. W., 1952. Theoretical Petrology, New York.Google Scholar
Bishop, A. C., 1963. Dark margins at igneous contacts; a critical study with special reference to those in Jersey, Channel Islands. Proc. Geol. Ass. Lond., 74, 289300.CrossRefGoogle Scholar
Buist, D. S., 1952. A contribution to the petrochemistry and petrogenesis of the composite sill of S. Bute. Trans. Edin. geol. Soc., 15, 52.CrossRefGoogle Scholar
Chapman, C. A., 1962. Diabase-granite composite dikes, with pillow-like structure, Mount Desert Island, Maine. J. Geol., 70, 539564.CrossRefGoogle Scholar
Cotton, C. A., 1944. Volcanoes as landscape forms. Whitcombe and Tombs, London.Google Scholar
Day, A. L., and Shepherd, E. S. 1913. Water and volcanic activity. Bull. geol. Soc. Amer., 24.CrossRefGoogle Scholar
Elwell, R. W. D., Skelhorn, R. R., and Drysdall, A. R., 1960. Inclined granitic pipes in the diorites of Guernsey. Geol. Mag., 97, 89105.CrossRefGoogle Scholar
Elwell, R. W. D., Skelhorn, R. R., and Drysdall, A. R., 1962. Net-veining in the diorite of north-east Guernsey, Channel Islands. J. Geol., 70, 215226.CrossRefGoogle Scholar
Emmons, R. C., 1940. The contribution of differential pressures to magmatic differentiation. Amer. J. Sci., 238, 121.CrossRefGoogle Scholar
Jaeger, J. C., 1961. The cooling of irregularly shaped igneous rocks. Amer. J. Sci., 259, 721734.CrossRefGoogle Scholar
McIntyre, D. B., and Reynolds, D. L., 1947. Chilled and “baked” edges as criteria of relative age. Geol. Mag., 84, 61–4.CrossRefGoogle Scholar
Read, H. H., 1957. The Granite Controversy. T. Murby and Co., London.CrossRefGoogle Scholar
Reynolds, D. L., 1937. Contact phenomena indicating a Tertiary age for the gabbro of the Slieve Gullion district. Proc. Geol. Ass., Lond., 48, 247275.CrossRefGoogle Scholar
Reynolds, D. L., 1951. The geology of Slieve Gullion, Foughill and Carrickcarnan; an actualistic interpretation of a Tertiary gabbro-granophyre complex. Trans. roy Soc. Edin., 62, 85143.CrossRefGoogle Scholar
Reynolds, D. L., 1954. Fluidization as a geological process, and its bearing on the problem of the intrusive granites. Amer. J. Sci., 252, 577613.CrossRefGoogle Scholar
Richey, J. E., 1940. Association of explosive brecciation and plutonic intrusion in the British Tertiary igneous province. Bull. Volc. Ser. II., 1, 157175.CrossRefGoogle Scholar
Richey, J. E., and Thomas, H. H., 1930. The geology of Ardnamurchan, north-west Mull and Coll. Mem. geol. Surv. U.K.Google Scholar
Skelhorn, R. R., and Elwell, R. W. D., (in press). The form and structure of the granophyric quartz-dolerite of centre 2, Ardnamurchan.Google Scholar
Smith, F. G., 1963. Physical Geochemistry. Reading, Mass.Google Scholar
Tazieff, H., 1950. L'eruption du volcan Gituro (Kivu, Congo Belge) de mars a juillet, 1948. Congo Belge et Ruandi-Urundi, Mem., 1.Google Scholar
Tomkeieff, S. I., 1940. The basalt lavas of the Giant's Causeway district of Northern Ireland. Bull. Volc. ser. II., 6, 89143.CrossRefGoogle Scholar
Turner, F. J., and Verhoogan, J., 1960. Igneous and metamorphic petrology. 2nd. Edn, New York.Google Scholar
Van Orstrand, C. E., 1944. Flow of heat from an intrusive body into country rock. Trans. amer. Inst. Min. Met. Eng. Tech. Publ., 1677, 19.Google Scholar
Wager, L. R., and Bailey, E. B., 1953. Basic magma chilled against acid magma. Nature, 172, 68–9.CrossRefGoogle Scholar
Wells, M. K., 1954. The structure of the granophyric quartz-dolerite intrusion of centre 2, Ardnamurchan and the problem of net-veining. Geol. Mag., 91, 293307.CrossRefGoogle Scholar
Wilshire, H. C., and Hobbs, B. E., 1962. Structure, sedimentary inclusions and hydrothermal alteration of a latite intrusion. J. Geol., 70, 328341.CrossRefGoogle Scholar
Windley, B. F., 1963. The plutonic development of the Sârdloq area, S. Greenland. Ph.D. thesis, Univ. of Exeter.Google Scholar
Windley, B. F., 1965. The composite net-veined diorite intrusives of the Julianehaab district, S. Greenland. Medd. Grønland, 172, Nr. 8, 160.Google Scholar
Yoder, H. S., and Tilley, C. E., 1956. Natural tholeiite basalt-water system. Carnegie Inst. Wash., Year Book, 55, 169171.Google Scholar