Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-14T05:20:09.726Z Has data issue: false hasContentIssue false

Sea level drop, palaeoenvironmental change and related biotic responses across Guadalupian–Lopingian boundary in southwest, North and Central Iran

Published online by Cambridge University Press:  25 January 2017

SAKINEH AREFIFARD*
Affiliation:
Department of Geology, Faculty of Sciences, Lorestan University, Khorramabad, Lorestan 68151-44316, Iran
*
*Author for correspondence: sarefifard@gmail.com

Abstract

The Capitanian to Wuchiapingian deposits in Zagros (southwest Iran), Alborz (North Iran) and Central Iran display important information about the end-Guadalupian extinction. According to lithological characteristics in the studied sections, the Guadalupian–Lopingian boundary (G-LB) interval can be subdivided into three units: the Capitanian unit, the latest Capitanian unit or interval unit (i.e. deposits in the topmost portion of the Capitanian strata) and the Wuchiapingian unit. The G-LB horizon is set at the base of Wuchiapingian deposits based on the first appearance datum (FAD) of the Late Permian diagnostic small foraminifers. The Capitanian unit was deposited subtidally, but the latest Capitanian unit was in the intertidal zone. The Wuchiapingian unit shows the return of subtidal conditions. A remarkable subaerial exposure occurs at the top of the Ruteh Formation, in Alborz, which is a laterite/bauxite horizon followed by continental deposits. The overall facies change in the G-L boundary intervals in the sections under study indicates a sea level drop around the G-LB which was at its lowest level in the Ruteh section. The decline and elimination of shallow marine biota in the G-LB interval took place in two steps in the Zagros and Alborz sections and in one step in Central Iran. These are indicative of the appearance of the stressful environment during the late Capitanian shallowing trend before the G-LB. The sea level drop and regression in the late Capitanian can be considered the major causes of end-Guadalupian extinction in the Iranian sections, but in the Alborz area volcanic activity is another feasible cause of this crisis.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alavi, M., 1991. Tectonic Map of the Middle East. Tehran: Geological Survey of Iran.Google Scholar
Ali, J. R., Thompson, G. M., Song, X.-Y. & Wang, Y.-L. 2002. Emeishan basalts (SW China) and the ‘end-Guadalupian’ crisis: magnetostratigraphic constraints. Journal of the Geological Society of London 159, 21–9.Google Scholar
Ali, J. R., Thompson, G. M., Zhou, M. F. & Song, X. Y. 2004. Emeishan Basalts Ar–Ar overprint ages define several tectonic events that affected the western Yangtze Platform in the Meso- and Cenozoic. Journal of Asian Earth Sciences 23, 163–78.CrossRefGoogle Scholar
Alroy, J. 2010. The shifting of diversity among major marine animal groups. Science 276, 235–8.Google Scholar
Angiolini, L. & Carabelli, L. 2010. Upper Permian brachiopods from the Nesen Formation, North Iran. Special Papers in Palaeontology 84, 4190.Google Scholar
Angiolini, L., Gaetani, M., Muttoni, G., Stephenson, M. H. & Zanchi, A. 2007. Tethyan oceanic currents and climate gradients 300 my ago. Geology 35 (12), 1071–4.Google Scholar
Arefifard, S. & Davydov, V. I. 2004. Permian in Kalmard, Shotori and Shirgesht areas, Central-Eastern Iran. Permophiles 44, 2832.Google Scholar
Arefifard, S. & Isaacson, P. E. 2011. Permian Sequence stratigraphy in East-central Iran: microplate records of Peri-Tethyan and Peri-Gondwanan events. Stratigraphy 8 (1), 6183.Google Scholar
Assereto, R. 1963. The Palaeozoic formations in Central Elburz (Iran) (Preliminary note). Rivista Italiana di Paleontologia e Stratigrafia 69, 503–43.Google Scholar
Baghbani, D. 1997. Correlation charts of selected Permian strata from Iran. Permophiles 30, 24–6.Google Scholar
Bambach, R. K. 2006. Phanerozoic biodiversity mass extinctions. Annual Review of Earth and Planetary Sciences 34, 127–55.Google Scholar
Bond, D. P. G., Hilton, J., Wignall, P. B., Ali, J. R., Stevens, L. G., Sun, Y. & Lai, X. 2010. The Middle Permian (Capitanian) mass extinction on land and in the oceans. Earth-Science Reviews 102, 100–16.Google Scholar
Bond, D. P. G. & Wignall, P. B. 2014. Large igneous provinces and mass extinctions: an update. In Volcanism, Impacts, and Mass Extinctions: Causes and Effects (eds Keller, G. & Kerr, A. C.), pp. 2955. Geological Society of America Special Paper 505.Google Scholar
Bottjer, D. J., Clapham, M. E., Fraiser, M. L. & Powers, C. M. 2008. Understanding mechanisms for the end-Permian mass extinction and the protracted Early Triassic aftermath and recovery. GSA Today 18, 410.Google Scholar
Bozorgnia, H. 1973. Palaeozoic Foraminiferal Biostratigraphy of Central and East Alborz mountains, Iran. Tehran: National Iranian Oil Company, Geological Laboratories. Publication 4, 185 pp.CrossRefGoogle Scholar
Clapham, M. E., Shen, S. Z. & Bottjer, D. J. 2009. The double mass extinction revisited: reassessing the severity, selectivity, and causes of the end-Guadalupian biotic crisis (Late Permian). Paleobiology 35, 3250.Google Scholar
Crippa, G. & Angiolini, L. 2012. Guadalupian (Permian) brachiopods from the Ruteh Limestone, North Iran. GeoArabia 17, 125–76.Google Scholar
Davydov, V.I. & Arefifard, S. 2013. Middle Permian (Guadalupian) fusulinid taxonomy and biostratigraphy of the mid-latitude Dalan Basin, Zagros, Iran and their applications in paleoclimate dynamics and paleogeography. GeoArabia 18 (2), 1762.Google Scholar
Erwin, D. H., Bowring, S. A. & Yugan, J. 2002. End-Permian mass extinctions: a review. In Catastrophic Events and Mass Extinctions: Impacts and Beyond (eds Koeberl, C. & Macleod, K. G.), pp. 363–83. Geological Society of America Special Paper 356.Google Scholar
Fantini, Sestini, N. 1965. The geology of the upper Djadjerud and Lar Valleys (North Iran). II. Palaeontology. Bryozoans, Brachiopods and Molluscs from Ruteh Limestone. Rivista Italiana di Paleontologia e Stratigrafia 71 (1), 13108.Google Scholar
Gaetani, M., Angiolini, L., Ueno, K., Nicora, A., Stephenson, M., Sciunnach, D., Rrttori, R., Price, G. & Sabouri, J. 2009. Pennsylvanian to Early Triassic stratigraphy in Alborz Mountains (Iran). In South Caspian to Central Iran Basins (eds Brunet, M.-F., Wilmsen, M. & Granath, J. W.), pp. 79128. Geological Society of London, Special Publication no. 312.Google Scholar
Gaillot, J. & Vachard, D. 2007. The KhuV Formation (Middle East) and time-equivalents in Turkey and South China: biostratigraphy from Capitanian to Changhsingian times (Permian), new foraminiferal taxa, and palaeogeographical implications. Coloquios de Paleontología 57, 37223.Google Scholar
Glaus, M. 1965. Die Geologie des Gebietes nordlich des Kandevan-Passes (Zentral-Elburz), Iran. Mitteilungen der Geologisches Institut ETH Zürich, n.s. 48, 165 pp. Published thesis.Google Scholar
Gradstein, F. M., Ogg, J. G., Schmitz, M. & Ogg, G. 2012. The Geologic Time Scale. Amsterdam: Elsevier, 1128 pp.Google Scholar
Groves, J. R. & Wang, Y. 2009. Foraminiferal diversification during the late Palaeozoic ice age. Paleobiology 35, 367–92.CrossRefGoogle Scholar
Hallam, A. & Wignall, P. B. 1997. Mass Extinctions and Their Aftermath. Oxford: Oxford University Press, 308 pp.Google Scholar
Hallam, A. & Wignall, P. B. 1999. Mass extinctions and sea-level changes. Earth-Science Review 48, 217–50.Google Scholar
Hallock, P. 1981. Algal symbiosis: a mathematical analysis. Marine Biology 62, 249–55.Google Scholar
Haq, B. U. & Schutter, S. R. 2008. A chronology of Palaeozoic sea-level changes. Science 322, 64–8.Google Scholar
He, B., Xu, Y.-G., Huang, X.-L., Luo, Z.-Y., Shi, Y.-R., Yang, Q.-J. & Yu, S.-Y. 2007. Age and duration of the Emeishan flood volcanism, SW China: Geochemistry and SHRIMP zircon U–Pb dating of silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section. Earth and Planetary Science Letters 255, 306323.Google Scholar
Hosseini, S. A., Conrad, M. C., Carras, N. & Kindler, P. 2014. Mizzia zagarthica sp. nov., a Late Berriasian–Early Valanginian dasycladalean alga from the Fahliyan Formation in the Zagros fold-thrust belt, SW Iran. Re-assessment on the genus Mizzia. Facies 60 (2), 501–14.Google Scholar
Isozaki, Y. 1997. Permo-Triassic boundary superanoxia and stratified super ocean: records from lost deep sea. Science 276, 235–8.CrossRefGoogle Scholar
Isozaki, Y. & Aljinovic, D. 2009. End-Guadalupian extinction of the Permian gigantic bivalve Alatoconchidae: end of gigantism in tropical seas by cooling. Palaeogeography, Palaeoclimatology, Palaeoecology 284, 1121.Google Scholar
Isozaki, Y., Aljinovic, D. & Kawahata, H. 2011. The Guadalupian (Permian) Kamura event in European Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology 308, 1221.Google Scholar
Isozaki, Y., Kawahata, H. & Ota, A. 2007. A unique carbon isotope record across the Guadalupian-Lopingian (Middle-Upper Permian) boundary in mid-oceanic paleo-atoll carbonates: the high productivity ‘Kamura event’ and its collapse in Panthalassa. Global Planetary Change 55, 2138.Google Scholar
Isozaki, Y., Yao, J. X., Ji, Z. S., Saitoh, M., Kobayashi, N. & Sakai, H. 2008. Rapid sea-level change in the Late Guadalupian (Permian) on the Tethyan side of South China: litho- and biostratigraphy of the Chaotian section in northern Sichuan. Proceedings of the Japan Academy, Series B 84, 344–53.Google Scholar
Jenny-Deshusses, C. 1983. Le Permien de l'Elbourz Central et Oriental (Iran): stratigraphie et micropaleontologie (foraminifères et algues). Ph.D. thesis, University of Geneva, Switzerland.Published thesis.Google Scholar
Jin, Y. G., Zhang, J. & Shang, Q. H. 1994. Two phases of end-Permian mass extinction. In Pangea: Global Environments and Resources (eds Embry, A. F., Beauchamp, B. & Glass, D. J.), pp. 813–22. Canadian Society of Petroleum Geologists Memoir no. 17.Google Scholar
Kahler, F. & Kahler, G., 1979. Fusuliniden (foraminifera) aus dem Karbon und Perm von Westanatolien und dem Iran. Mitteilungen der Österreichischen Geologischen Gesellschaft 70, 187269.Google Scholar
Knoll, A. H., Bambach, R. K., Canfield, D. E. & Grotzinger, J. P. 1996. Comparative Earth history and Late Permian mass extinction. Science 273, 452–7.CrossRefGoogle ScholarPubMed
Kobayashi, F. and Ishii, K. I. 2003. Paleobiogeographic analysis of Yahtashian to Midian fusulinacean faunas of the Surmaq Formation in the Abadeh region, Central Iran. Journal of Foraminiferal Research 33, 155–65.Google Scholar
Kofukuda, D., Isozaki, Y. & Igo, H. 2014. A remarkable sea-level drop and relevant biotic responses across the Guadalupian–Lopingian (Permian) boundary in low-latitude mid-Panthalassa: irreversible changes recorded in accreted paleo-atoll limestones in Akasaka and Ishiyama, Japan. Journal of Asian Earth Sciences 82, 4765.CrossRefGoogle Scholar
Kolodka, C., Vennin, E., Vachard, D., Trocme, V. & Goodarzi, M. 2012. Timing and progression of the end-Guadalupian crisis in the Fars province (Dalan Formation, Kuh-e Gakhum, Iran) constrained by foraminifers and other carbonate microfossils. Facies 58 (1), 131–53.Google Scholar
Lai, X., Wang, W., Wignall, P. B., Bond, D. P. G., Jiang, H., Ali, J. R., John, E. H. & Sun, Y. 2008. Palaeoenvironmental change during the end-Guadalupian (Permian) mass extinction in Sichuan, China. Palaeogeography, Palaeoclimatology, Palaeoecology 269, 7893.Google Scholar
Lee, J. J. & Hallock, P. 1987. Algal symbiosis as the driving force in the evolution of larger foraminifera. Annals of the New York Academy of Sciences 503, 330–47.Google Scholar
Leven, E. J. 2003. Diversity dynamics of fusulinid genera and main stages of their evolution. Stratigraphy and Geological Correlation 11, 220–30.Google Scholar
Leven, E. J. & Vaziri Moghaddam, H. 2004. Carboniferous-Permian stratigraphy and fusulinids of eastern Iran. The Permian in the Bagh-e-Vang section (Shirgesht area). Rivista Italiano di Paleontologia Stratigrafia 110, 441–65.Google Scholar
Lo, C. H., Chung, S. L., Lee, T. Y. & Wu, G. Y. 2002. Age of the Emeishan flood magmatism and relations to Permian-Triassic boundary events. Earth and Planetary Science Letters 198, 449–58.Google Scholar
Nielsen, J. K. & Shen, Y. 2004. Evidence for sulfidic deepwater during the Late Permian in the East Greenland Basin. Geology 32, 1037–40.Google Scholar
Payne, J. L., Groves, J. R., Jost, A. B., Nguyen, T., Moffitt, S. E., Hill, T. M. & Skotheim, J. M. 2012. Late Palaeozoic fusulinoidean gigantism driven by atmospheric hyperoxia. Evolution 66 (9), 2929–39.Google Scholar
Qiu, Z., Wang, Q., Zou, C., Yon, D., Wei, H. 2014. Transgressive–regressive sequences on the slope of an isolated carbonate platform (Middle–Late Permian, Laibin, South China). Facies 60 (1), 327–45.Google Scholar
Raup, D. M. & Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215, 1501–3.Google Scholar
Ross, C. A. 1967. Development of fusulinid (Foraminiferida) faunal realms. Journal of Paleontology 41, 1341–54.Google Scholar
Ross, C. A. 1972. Paleobiological analysis of fusulinacean (Foraminiferida) shell morphology. Journal of Paleontology 46, 719–28.Google Scholar
Ross, C. A. 1982. Paleobiology of fusulinaceans. Proceedings of the North American Paleontological Convention 3, 441–5.Google Scholar
Ross, C. A. & Ross, J. R. P. 1995. Permian sequence stratigraphy. In The Permian of Northern Pangaea I (eds Scholle, P. A., Peryt, T. M. & Ullmer-Scholle, D. S.), pp. 98123. Berlin: Springer-Verlag.Google Scholar
Ruttner, A., Nabavi, M. & Hajian, J. 1968. Geology of the Shirgesht area (Tabas area, East Iran). Geological Survey of Iran, Report no. 4, 133 pp.Google Scholar
Seilacher, A. 1990. Aberrations in bivalve evolution related to photo- and chemosymbiosis. Historical Biology 3, 289311.Google Scholar
Sepkoski, J. J. Jr. 1994. Extinction and the fossil record. Geotimes 39, 15–7.Google Scholar
Sepkoski, J. J. Jr. 1996. Patterns of Phanerozoic extinction: a perspective from global data bases. In Global Events and Event Stratigraphy (ed. Walliser, O. H.), pp. 3151. Berlin: Springer.Google Scholar
Setudehnia, A. 1975. The Palaeozoic sequence at Zard Kuh and Kuh-e Dinar. Bulletin of the Iranian Petroleum Institute 60, 1633.Google Scholar
Shellnut, J. G. 2014. The Emeishan large igneous province: a synthesis. Geoscience Frontiers 5, 369–94.Google Scholar
Stanley, S. M. & Yang, X. 1994. A double mass extinction at the end of the Palaeozoic Era. Science 266, 1340–4.CrossRefGoogle Scholar
Stepanov, D. L., Golshani, F. & Stöcklin, J. 1969. Upper Permian and Permian-Triassic Boundary in North Iran. Geological Survey of Iran, Report no. 12, 72 pp.Google Scholar
Stöcklin, J., Eftekhar-Nezhad, J. & Hushmand-Zadeh, A. 1965. Geology of the Shotori Range (Tabas area, East Iran). Geological Survey of Iran, Report no. 3, 69 pp.Google Scholar
Szabo, F. & Kheradpir, A. 1978. Permian and Triassic stratigraphy Zagros Basin, southwest Iran. Journal of Petroleum Geology 1, 5782.Google Scholar
Wang, X.-D. & Sugiyama, T. 2000. Diversity and extinction patterns of Permian coral faunas of China. Lethaia 33, 285–94.Google Scholar
Wignall, P. B., Sun, Y., Bond, D. P. G., Izon, G., Newton, R. J., Vedrine, S., Widdowson, M., Ali, J. R., Lai, X., Jiang, H., Cope, H. & Bottrell, S. H. 2009. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China. Science 324, 1179–82.Google Scholar
Yang, X.-N., Liu, J.-R. & Shi, G.-J. 2004. Extinction process and patterns of Middle Permian Fusulinaceans in southwest China. Lethaia 37, 139–47.Google Scholar
Zhong, Y. T., He, B., Mundil, R. & Xu, Y.-G. 2014. CA-TIMS zircon U–Pb dating of felsic ignimbrite from the Binchuan section: implications for the termination age of Emeishan large igneous province. Lithos, 204, 14–9.Google Scholar
Zhou, M.-F., Malpas, J., Song, X.-Y., Robinson, P. T., Sun, M., Kennedy, A. K., Lesher, C. M. & Keays, R. R. 2002. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth and Planetary Science Letters 196, 113–22.CrossRefGoogle Scholar