Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T07:18:02.724Z Has data issue: false hasContentIssue false

Sedimentology and chemostratigraphy of the terminal Ediacaran Dengying Formation at the Gaojiashan section, South China

Published online by Cambridge University Press:  17 June 2019

Huan Cui*
Affiliation:
Research Group of Analytical, Environmental and Geo- Chemistry, Division of Earth System Science, Vrije Universiteit Brussel, Brussels, Belgium ET-HOME (Evolution and Tracers of the Habitability of Mars and Earth) Astrobiology Research Consortium, Belgium State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China Department of Geology, University of Maryland, College Park, Maryland 20742, USA
Shuhai Xiao
Affiliation:
Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA
Yaoping Cai
Affiliation:
State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, Xi’an 710069, China
Sara Peek
Affiliation:
Department of Geology, University of Maryland, College Park, Maryland 20742, USA United States Geological Survey, Menlo Park, California 94025, USA
Rebecca E. Plummer
Affiliation:
Department of Geology, University of Maryland, College Park, Maryland 20742, USA Hydrology and Remote Sensing Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, Maryland 20705USA
Alan J. Kaufman
Affiliation:
Department of Geology, University of Maryland, College Park, Maryland 20742, USA Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20742, USA
*
*Author for correspondence: Huan Cui, Emails: Huan. Cui@vub.be; geohcui@gmail.com

Abstract

The terminal Ediacaran Dengying Formation (c. 551.1–538.8 Ma) in South China is one of two successions where Ediacara-type macrofossils are preserved in carbonate facies along with skeletal fossils and bilaterian animal traces. Given the remarkable thickness of carbonate-bearing strata deposited in less than 12.3 million years, the Dengying Formation holds the potential for construction of a relatively continuous chemostratigraphic profile for the terminal Ediacaran Period. In this study, a detailed sedimentological and chemostratigraphic (δ13Ccarb, δ18Ocarb, δ13Corg, δ34Spyrite, and 87Sr/86Sr) investigation was conducted on the Dengying Formation at the Gaojiashan section, Ningqiang County of southern Shaanxi Province, South China. Sedimentological results reveal an overall shallow-marine depositional environment. Carbonate breccia, void-filling botryoidal precipitates and aragonite crystal fans are common in the Algal Dolomite Member of the Dengying Formation, suggesting that peritidal facies were repeatedly karstified. The timing of karstification was likely early, probably soon after the deposition of the dolomite sediments. The presence of authigenic aragonite cements suggests high alkalinity in the terminal Ediacaran ocean. Geochemical analysis of micro-drilled samples shows that distinct compositions are registered in different carbonate phases, which should be considered when constructing chemostratigraphic profiles representative of true temporal variations in seawater chemistry. Integrated chemostratigraphic data suggest enhanced burial of organic carbon and pyrite, and the occurrence of extensive marine anoxia (at least in the Gaojiashan Member). Rapid basinal subsidence and carbonate accumulation during a time of elevated seawater alkalinity and increased rates of pyrite burial may have facilitated the evolutionary innovation of early biomineralizing metazoans.

Type
Original Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Huan Cui, Analytical, Environmental and Geo- Chemistry Research Group & ET-HOME Astrobiology Research Consortium, Vrije Universiteit Brussel, Brussels, Belgium

References

Adams, EW, Schröder, S, Grotzinger, JP and Mccormick, DS (2004) Digital reconstruction and stratigraphic evolution of a microbial-dominated, isolated carbonate platform (terminal Proterozoic, Nama Group, Namibia). Journal of Sedimentary Research 74, 479–97. doi: 10.1306/122903740479.CrossRefGoogle Scholar
Aissaoui, DM (1985) Botryoidal aragonite and its diagenesis. Sedimentology 32, 345–61. doi: 10.1111/j.1365-3091.1985.tb00516.x.CrossRefGoogle Scholar
Aitken, JD and Narbonne, GM (1989) Two occurrences of Precambrian thrombolites from the Mackenzie Mountains, northwestern Canada. Palaios 4, 384–8. doi: 10.2307/3514563.Google Scholar
Banner, JL (1995) Application of the trace element and isotope geochemistry of strontium to studies of carbonate diagenesis. Sedimentology 42, 805–24. doi: 10.1111/j.1365-3091.1995.tb00410.x.CrossRefGoogle Scholar
Becker-Kerber, B, Pacheco, MLAF, Rudnitzki, ID, Galante, D, Rodrigues, F and De Moraes Leme, J (2017) Ecological interactions in Cloudina from the Ediacaran of Brazil: implications for the rise of animal biomineralization. Scientific Reports 7, 5482. doi: 10.1038/s41598-017-05753-8.CrossRefGoogle ScholarPubMed
Birgel, D, Meister, P, Lundberg, R, Horath, TD, Bontognali, TRR, Bahniuk, AM, De Rezende, CE, Vasconcelos, C and Mckenzie, JA (2015) Methanogenesis produces strong 13C enrichment in stromatolites of Lagoa Salgada, Brazil: a modern analogue for Palaeo-/Neoproterozoic stromatolites? Geobiology 13, 245–66. doi: 10.1111/gbi.12130.CrossRefGoogle ScholarPubMed
Bishop, JW, Osleger, DA, Montañez, IP and Sumner, DY (2014) Meteoric diagenesis and fluid-rock interaction in the Middle Permian Capitan backreef: Yates Formation, Slaughter Canyon, New Mexico. American Association of Petroleum Geologists Bulletin 98, 1495–519. doi: 10.1306/05201311158.Google Scholar
Bristow, TF, Bonifacie, M, Derkowski, A, Eiler, JM and Grotzinger, JP (2011) A hydrothermal origin for isotopically anomalous cap dolostone cements from South China. Nature 474, 6871. doi: 10.1038/nature10096.CrossRefGoogle ScholarPubMed
Broecker, WS (1970) A boundary condition on the evolution of atmospheric oxygen. Journal of Geophysical Research 75, 3553–7. doi: 10.1029/JC075i018p03553.CrossRefGoogle Scholar
Cai, Y, Cortijo, I, Schiffbauer, JD and Hua, H (2017) Taxonomy of the late Ediacaran index fossil Cloudina and a new similar taxon from South China. Precambrian Research 298, 146–56. doi: 10.1016/j.precamres.2017.05.016.CrossRefGoogle Scholar
Cai, Y, Hua, H, Schiffbauer, JD, Sun, B and Yuan, X (2014) Tube growth patterns and microbial mat-related lifestyles in the Ediacaran fossil Cloudina, Gaojiashan Lagerstätte, South China. Gondwana Research 25, 1008–18. doi: 10.1016/j.gr.2012.12.027.Google Scholar
Cai, Y, Hua, H, Xiao, S, Schiffbauer, JD and Li, P (2010) Biostratinomy of the late Ediacaran pyritized Gaojiashan Lagerstätte from southern Shaanxi, South China: Importance of event deposits. Palaios 25, 487506. doi: 10.2110/palo.2009.p09-133r.CrossRefGoogle Scholar
Cai, Y, Hua, H and Zhang, X (2013) Tube construction and life mode of the late Ediacaran tubular fossil Gaojiashania cyclus from the Gaojiashan Lagerstätte. Precambrian Research 224, 255–67. doi: 10.1016/j.precamres.2012.09.022.CrossRefGoogle Scholar
Cai, Y, Schiffbauer, JD, Hua, H and Xiao, S (2011) Morphology and paleoecology of the late Ediacaran tubular fossil Conotubus hemiannulatus from the Gaojiashan Lagerstätte of southern Shaanxi Province, South China. Precambrian Research 191, 4657. doi: 10.1016/j.precamres.2011.09.002.CrossRefGoogle Scholar
Cai, Y, Xiao, S, Hua, H and Yuan, X (2015) New material of the biomineralizing tubular fossil Sinotubulites from the late Ediacaran Dengying Formation, South China. Precambrian Research 261, 1224. doi: 10.1016/j.precamres.2015.02.002.CrossRefGoogle Scholar
Cai, Y, Xiao, S, Li, G and Hua, H (2019) Diverse biomineralizing animals in the terminal Ediacaran Period herald the Cambrian explosion. Geology 47, 380–4. doi: 10.1130/G45949.1.CrossRefGoogle Scholar
Campbell, K, Farmer, J and Des Marais, D (2002) Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments. Geofluids 2, 6394. doi: 10.1046/j.1468-8123.2002.00022.x.CrossRefGoogle Scholar
Canfield, DE, Poulton, SW and Narbonne, GM (2007) Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315, 92–5. doi: 10.1126/science.1135013.CrossRefGoogle ScholarPubMed
Cao, R (2002) The sedimentary environment of grapestone in Dengying formation of Sinian system in Sichuan and Yunnan. Yunnan Geology 21, 208–13 (in Chinese with English abstract).Google Scholar
Cao, R and Xue, Y (1983) Vadose pisolites of the Tongying Formation (Upper Sinian System) in southwest China. In Coated Grains (ed. Peryt, TM), pp. 538–47. Berlin: Springer.Google Scholar
Cao, R and Zhao, W (1978a) Manicosiphoniaceae, a new family of fossil algae from the Sinian System of SW China with reference to its systematic position. Acta Palaeontologica Sinica 17, 2940 (in Chinese with English abstract).Google Scholar
Cao, R and Zhao, W (1978b) The algal flora of the Tongying Formation (upper Sinian System) in southwestern China. Memoir of the Nanjing Institute of Geology and Palaeontology, Academia Sinica 10, 128 (in Chinese with English abstract).Google Scholar
Chen, Z, Chen, X, Zhou, C, Yuan, X and Xiao, S (2018) Late Ediacaran trackways produced by bilaterian animals with paired appendages. Science Advances 4, eaao6691. doi: 10.1126/sciadv.aao6691.CrossRefGoogle ScholarPubMed
Chen, Y, Chu, X, Zhang, X and Zhai, M (2015) Carbon isotopes, sulfur isotopes, and trace elements of the dolomites from the Dengying Formation in Zhenba area, southern Shaanxi: implications for shallow water redox conditions during the terminal Ediacaran. Science China: Earth Sciences 58, 1107–22. doi: 10.1007/s11430-015-5071-0.Google Scholar
Chen, Y, Shen, A, Pan, L, Zhang, J and Wang, X (2017) Origin and distribution of microbial dolomite reservoirs: a case study of 4th Member of Sinian Dengying Formation in the Sichuan Basin, SW China. Petroleum Exploration and Development 5, 704–15 (in Chinese with English abstract). doi: 10.11698/PED.2017.05.00.Google Scholar
Chen, Z, Zhou, C, Xiao, S, Wang, W, Guan, C, Hua, H and Yuan, X (2014) New Ediacara fossils preserved in marine limestone and their ecological implications. Scientific Reports 4, 4180. doi: 10.1038/srep04180.CrossRefGoogle ScholarPubMed
Claypool, GE and Kaplan, I (1974) The origin and distribution of methane in marine sediments. In Natural Gases in Marine Sediments (ed. Kaplan, IR), pp. 99139. Boston, MA: Springer.Google Scholar
Condon, D, Zhu, M, Bowring, S, Wang, W, Yang, A and Jin, Y (2005) U–Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 308, 95–8. doi: 10.1126/science.1107765.CrossRefGoogle ScholarPubMed
Coplen, TB, Brand, WA, Gehre, M, Gröning, M, Meijer, HAJ, Toman, B and Verkouteren, RM (2006) New guidelines for δ13C measurements. Analytical Chemistry 78, 2439–41. doi: 10.1021/ac052027c.CrossRefGoogle ScholarPubMed
Corsetti, FA, Kidder, DL and Marenco, PJ (2006) Trends in oolite dolomitization across the Neoproterozoic–Cambrian boundary: a case study from Death Valley, California. Sedimentary Geology 191, 135–50. doi: 10.1016/j.sedgeo.2006.03.021.CrossRefGoogle Scholar
Corsetti, FA, Lorentz, NJ and Pruss, SB (2004) Formerly-aragonite seafloor fans from Neoproterozoic strata, Death Valley and southeastern Idaho, United States: implications for “cap carbonate” formation and Snowball Earth. In The Extreme Proterozoic: Geology, Geochemistry, and Climate (eds Jenkins, GS, McMenamin, MAS, McKay, CP and Sohl, L), pp. 3344. Geophysical Monograph Series vol. 146. Washington, D.C.: American Geophysical Union.Google Scholar
Cox, GM, Halverson, GP, Stevenson, RK, Vokaty, M, Poirier, A, Kunzmann, M, Li, Z-X, Denyszyn, SW, Strauss, JV and Macdonald, FA (2016) Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth. Earth and Planetary Science Letters 446, 8999. doi: 10.1016/j.epsl.2016.04.016.CrossRefGoogle Scholar
Cozzi, A and Al-Siyabi, HA (2004) Sedimentology and play potential of the late Neoproterozoic Buah Carbonates of Oman. GeoArabia 9, 1136.Google Scholar
Cui, H, Grazhdankin, DV, Xiao, S, Peek, S, Rogov, VI, Bykova, NV, Sievers, NE, Liu, X-M and Kaufman, AJ (2016a) Redox-dependent distribution of early macro-organisms: evidence from the terminal Ediacaran Khatyspyt Formation in Arctic Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology 461, 122–39. doi: 10.1016/j.palaeo.2016.08.015.Google Scholar
Cui, H, Kaufman, AJ, Peng, Y, Liu, X-M, Plummer, RE and Lee, EI (2018a) The Neoproterozoic Hüttenberg δ13C anomaly: genesis and global implications. Precambrian Research 313, 242–62. doi: 10.1016/j.precamres.2018.05.024.Google Scholar
Cui, H, Kaufman, AJ, Xiao, S, Peek, S, Cao, H, Min, X, Cai, Y, Siegel, Z, Liu, XM, Peng, Y, Schiffbauer, JD and Martin, AJ (2016b) Environmental context for the terminal Ediacaran biomineralization of animals. Geobiology 14, 344–63. doi: 10.1111/gbi.12178.CrossRefGoogle ScholarPubMed
Cui, H, Kaufman, AJ, Xiao, S, Zhou, C and Liu, X-M (2017a) Was the Ediacaran Shuram Excursion a globally synchronized early diagenetic event? Insights from methane-derived authigenic carbonates in the uppermost Doushantuo Formation, South China. Chemical Geology 450, 5980. doi: 10.1016/j.chemgeo.2016.12.010.CrossRefGoogle Scholar
Cui, H, Kaufman, AJ, Xiao, S, Zhu, M, Zhou, C and Liu, X-M (2015) Redox architecture of an Ediacaran ocean margin: Integrated chemostratigraphic (δ13C–δ34S–87Sr/86Sr–Ce/Ce*) correlation of the Doushantuo Formation, South China. Chemical Geology 405, 4862. doi: 10.1016/j.chemgeo.2015.04.009.CrossRefGoogle Scholar
Cui, H, Kitajima, K, Spicuzza, MJ, Fournelle, JH, Denny, A, Ishida, A, Zhang, F and Valley, JW (2018b) Questioning the biogenicity of Neoproterozoic superheavy pyrite by SIMS. American Mineralogist 103, 1362–400. doi: 10.2138/am-2018-6489.CrossRefGoogle Scholar
Cui, H, Kitajima, K, Spicuzza, MJ, Fournelle, JH, Denny, A, Ishida, A, Zhang, F and Valley, JW (2018c) Questioning the biogenicity of Neoproterozoic superheavy pyrite. In Goldschmidt 2018, Boston, Massachusetts, USA, 12–17 August 2018. Abstract, 1 pp.Google Scholar
Cui, H, Kitajima, K, Spicuzza, MJ, Fournelle, J, Ishida, A, Denny, A, Zhang, F and Valley, J (2017b) Primary or secondary? Testing the Neoproterozoic superheavy pyrite by SIMS. Geological Society of America Abstracts with Programs 49 (6). doi: 10.1130/abs/2017AM-300028.CrossRefGoogle Scholar
Davies, GR and Smith, LB Jr (2006) Structurally controlled hydrothermal dolomite reservoir facies: an overview. American Association of Petroleum Geologists Bulletin 90, 1641–90. doi: 10.1306/05220605164.CrossRefGoogle Scholar
Ding, L, Zhang, L, Li, Y and Dong, J (1992) The Study of the Late Sinian–Early Cambrian Biotas from the Northern Margin of the Yangtze Platform. Beijing: Scientific and Technical Documents Publishing House.Google Scholar
Duda, J-P, Zhu, M and Reitner, J (2015) Depositional dynamics of a bituminous carbonate facies in a tectonically induced intra-platform basin: the Shibantan Member (Dengying Formation, Ediacaran Period). Carbonates and Evaporites 31, 8799. doi: 10.1007/s13146-015-0243-8.CrossRefGoogle Scholar
Evans, M, Selmer, K, Breeden, B, Lopatka, A and Plummer, R (2016) Correction algorithm for on-line continuous flow δ13C and δ18O carbonate and cellulose stable isotope analyses. Geochemistry, Geophysics, Geosystems 17, 3580–8. doi: 10.1002/2016GC006469.CrossRefGoogle Scholar
Fang, S, Hou, F and Dong, Z (2003) Non-stromatolite ecologic system cyanobacteria dolostone in Dengying Formation of Upper-Sinian. Acta Sedimentologica Sinica 21, 96105 (in Chinese with English abstract).Google Scholar
Fedonkin, MA (1990) Systematic description of Vendian metazoa. In The Vendian System: Vol. 1 Paleontology (eds Sokolov, BS and Iwanowski, AB), pp. 71120. Berlin: Springer-Verlag.Google Scholar
Fedorov, AB and Zhuravlev, AY (1993) Oldest biomineralized animal Cloudina. In “Biomineralization 93”: 7th International Symposium on Biomineralization, Monaco, 17–20 November 1993, Programs and Abstracts, pp. 1720.Google Scholar
Fike, DA and Grotzinger, JP (2008) A paired sulfate–pyrite δ34S approach to understanding the evolution of the Ediacaran–Cambrian sulfur cycle. Geochimica et Cosmochimica Acta 72, 2636–48. doi: 10.1016/j.gca.2008.03.021.CrossRefGoogle Scholar
Gamper, A, Struck, U, Ohnemueller, F, Heubeck, C and Hohl, S (2015) Chemo- and biostratigraphy of the Gaojiashan section (northern Yangtze platform, South China): a new Pc–C boundary section. Fossil Record 18, 105–17. doi: 10.5194/fr-18-105-2015.CrossRefGoogle Scholar
Ginsburg, RN and James, NP (1976) Submarine botryoidal aragonite in Holocene reef limestones, Belize. Geology 4, 431–6. doi: 10.1130/0091-7613(1976)4<431:sbaihr>2.0.co;2.2.0.CO;2>CrossRefGoogle Scholar
Gomez, FJ, Kah, LC, Bartley, JK and Astini, RA (2014) Microbialites in a high-altitude Andean lake: multiple controls in carbonate precipitation and lamina accretion. Palaios 29, 233–49. doi: 10.2110/palo.2013.049.CrossRefGoogle Scholar
Gorin, GE, Racz, LG and Walter, MR (1982) Late Precambrian–Cambrian sediments of Huqf Group, Sultanate of Oman. American Association of Petroleum Geologists Bulletin 66, 2609–27.Google Scholar
Grant, SWF (1990) Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. American Journal of Science 290-A, 261–94.Google ScholarPubMed
Grant, SWF, Knoll, AH and Germs, GJB (1991) Probable calcified metaphytes in the latest Proterozoic Nama Group, Namibia: origin, diagenesis, and implications. Journal of Paleontology 65, 118. doi: 10.1017/s002233600002014x.CrossRefGoogle ScholarPubMed
Grazhdankin, DV, Balthasar, U, Nagovitsin, KE and Kochnev, BB (2008) Carbonate-hosted Avalon-type fossils in arctic Siberia. Geology 36, 803–6. doi: 10.1130/g24946a.1.CrossRefGoogle Scholar
Grotzinger, J, Adams, E and Schröder, S (2005) Microbial–metazoan reefs of the terminal Proterozoic Nama Group (c. 550–543 Ma), Namibia. Geological Magazine 142, 499517. doi: 10.1017/s0016756805000907.CrossRefGoogle Scholar
Grotzinger, J and Al-Rawahi, Z (2014) Depositional facies and platform architecture of microbialite-dominated carbonate reservoirs, Ediacaran–Cambrian Ara Group, Sultanate of Oman. American Association of Petroleum Geologists Bulletin 98, 1453–94. doi: 10.1306/02271412063.CrossRefGoogle Scholar
Grotzinger, JP and James, NP (2000) Precambrian carbonates: evolution of understanding. In Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World (eds Grotzinger, JP and James, NP), pp. 320. Tulsa, Oklahoma: Society for Sedimentary Geology (SEPM) Special Publication no. 67.CrossRefGoogle Scholar
Grotzinger, JP, Watters, WA and Knoll, AH (2000) Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology 26, 334–59. doi: 10.1666/0094-8373(2000)026<0334:cmitsr>2.0.co;2.2.0.CO;2>CrossRefGoogle Scholar
Guo, X and Chafetz, HS (2014) Trends in δ18O and δ13C values in lacustrine tufa mounds: palaeohydrology of Searles Lake, California. Sedimentology 61, 221–37. doi: 10.1111/sed.12085.CrossRefGoogle Scholar
Guo, Q, Deng, Y and Yang, X (2012) Carbon isotopic evolution of the Late Ediacaran Gaojiashan biota on the northern Yangtze Platform, South China. Acta Geologica Sinica (English Edition) 86, 1447–54. doi: 10.1111/1755-6724.12013.Google Scholar
Habicht, KS, Gade, M, Thamdrup, B, Berg, P and Canfield, DE (2002) Calibration of sulfate levels in the Archean ocean. Science 298, 2372–4. doi: 10.1126/science.1078265.CrossRefGoogle ScholarPubMed
Hall, M, Kaufman, AJ, Vickers-Rich, P, Ivantsov, A, Trusler, P, Linnemann, U, Hofmann, M, Elliott, D, Cui, H, Fedonkin, M, Hoffmann, K-H, Wilson, SA, Schneider, G and Smith, J (2013) Stratigraphy, palaeontology and geochemistry of the late Neoproterozoic Aar Member, southwest Namibia: reflecting environmental controls on Ediacara fossil preservation during the terminal Proterozoic in African Gondwana. Precambrian Research 238, 214–32. doi: 10.1016/j.precamres.2013.09.009.CrossRefGoogle Scholar
Halverson, GP, Dudás, , Maloof, AC and Bowring, SA (2007) Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeography, Palaeoclimatology, Palaeoecology 256, 103–29. doi: 10.1016/j.palaeo.2007.02.028.CrossRefGoogle Scholar
Halverson, GP, Wade, BP, Hurtgen, MT and Barovich, KM (2010) Neoproterozoic chemostratigraphy. Precambrian Research 182, 337–50. doi: 10.1016/j.precamres.2010.04.007.CrossRefGoogle Scholar
Han, J, Morris, SC, Ou, Q, Shu, D and Huang, H (2017) Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China). Nature 542, 228–31. doi: 10.1038/nature21072.CrossRefGoogle Scholar
Hantsoo, KG, Kaufman, AJ, Cui, H, Plummer, RE and Narbonne, GM (2018) Effects of bioturbation on carbon and sulfur cycling across the Ediacaran–Cambrian transition at the GSSP in Newfoundland, Canada. Canadian Journal of Earth Sciences 55, 1240–52. doi: 10.1139/cjes-2017-0274.CrossRefGoogle Scholar
Hao, Y, Zhou, J, Chen, X, Pan, L, Hu, Y and Hu, A (2015) Genesis and geological significance of upper Sinian Dengying dolostone with grape-lace shaped cement, Sichuan Basin. Marine Origin Petroleum Geology 20, 5764 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2015.04.008.Google Scholar
Hayes, JM, Strauss, H and Kaufman, AJ (1999) The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chemical Geology 161, 103–25. doi: 10.1016/s0009-2541(99)00083-2.CrossRefGoogle Scholar
Higgins, J, Fischer, W and Schrag, D (2009) Oxygenation of the ocean and sediments: consequences for the seafloor carbonate factory. Earth and Planetary Science Letters 284, 2533. doi: 10.1016/j.epsl.2009.03.039.CrossRefGoogle Scholar
Hofmann, HJ and Mountjoy, EW (2001) Namacalathus–Cloudina assemblage in Neoproterozoic Miette Group (Byng Formation), British Columbia: Canada’s oldest shelly fossils. Geology 29, 1091–4. doi: 10.1130/0091-7613(2001)029<1091:ncainm>2.0.co;2.2.0.CO;2>CrossRefGoogle Scholar
Horton, TW, Defliese, WF, Tripati, AK and Oze, C (2015) Evaporation induced 18O and 13C enrichment in lake systems: a global perspective on hydrologic balance effects. Quaternary Science Reviews 131, 365–79. doi: 10.1016/j.quascirev.2015.06.030.CrossRefGoogle Scholar
Hua, H, Chen, Z and Yuan, X (2007) The advent of mineralized skeletons in Neoproterozoic Metazoa—new fossil evidence from the Gaojiashan Fauna. Geological Journal 42, 263–79. doi: 10.1002/gj.1077.Google Scholar
Irwin, H, Curtis, C and Coleman, M (1977) Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269, 209–13. doi: 10.1038/269209a0.CrossRefGoogle Scholar
Jacobsen, SB and Kaufman, AJ (1999) The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chemical Geology 161, 3757. doi: 10.1016/s0009-2541(99)00080-7.CrossRefGoogle Scholar
Jiang, G, Kaufman, AJ, Christie-Blick, N, Zhang, S and Wu, H (2007) Carbon isotope variability across the Ediacaran Yangtze platform in South China: implications for a large surface-to-deep ocean δ13C gradient. Earth and Planetary Science Letters 261, 303–20. doi: 10.1016/j.epsl.2007.07.009.CrossRefGoogle Scholar
Jiang, G, Kennedy, MJ and Christie-Blick, N (2003) Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature 426, 822–6. doi: 10.1038/nature02201.CrossRefGoogle ScholarPubMed
Jiang, G, Kennedy, MJ, Christie-Blick, N, Wu, H and Zhang, S (2006a) Stratigraphy, sedimentary structures, and textures of the late Neoproterozoic Doushantuo cap carbonate in South China. Journal of Sedimentary Research 76, 978–95. doi: 10.2110/jsr.2006.086.CrossRefGoogle Scholar
Jiang, G, Shi, X and Zhang, S (2006b) Methane seeps, methane hydrate destabilization, and the late Neoproterozoic postglacial cap carbonates. Chinese Science Bulletin 51, 1152–73. doi: 10.1007/s11434-006-1152-y.Google Scholar
Jiang, G, Shi, X, Zhang, S, Wang, Y and Xiao, S (2011) Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551Ma) in South China. Gondwana Research 19, 831–49. doi: 10.1016/j.gr.2011.01.006.CrossRefGoogle Scholar
Jiang, Y, Tao, Y, Gu, Y, Wang, J, Qiang, Z, Jiang, N, Lin, G and Jiang, C (2016) Hydrothermal dolomitization in Dengying Formation, Gaoshiti-Moxi area, Sichuan Basin, SW China. Petroleum Exploration and Development 43, 5464. doi: 10.1016/S1876-3804(16)30006-4.CrossRefGoogle Scholar
Jørgensen, BB and Kasten, S (2006) Sulfur cycling and methane oxidation. In Marine Geochemistry (eds Schulz, HD and Zabel, M), pp. 271309. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Knauth, LP and Kennedy, MJ (2009) The late Precambrian greening of the Earth. Nature 460, 728–32. doi: 10.1038/nature08213.CrossRefGoogle Scholar
Knoll, AH, Grotzinger, JP, Kaufman, AJ and Kolosov, P (1995) Integrated approaches to terminal Proterozoic stratigraphy: an example from the Olenek Uplift, northeastern Siberia. Precambrian Research 73, 251–70. doi: 10.1016/0301-9268(94)00081-2.CrossRefGoogle ScholarPubMed
Lei, H and Zhu, L (1992) Study of origin of the Sinian algal and nonalgal dolomitites in Sichuan Basin. Acta Sedimentologica Sinica 10, 6978 (in Chinese with English abstract).Google Scholar
Leleu, T, Chavagnac, V, Delacour, A, Noiriel, C, Ceuleneer, G, Aretz, M, Rommevaux, C and Ventalon, S (2016) Travertines associated with hyperalkaline springs: evaluation as a proxy for paleoenvironmental conditions and sequestration of atmospheric CO2. Journal of Sedimentary Research 86, 1328–43. doi: 10.2110/jsr.2016.79.CrossRefGoogle Scholar
Li, W, Hu, G and Zhou, J (2015) Asphalt features and gas accumulation mechanism of Sinian reservoirs in the Tongwan Palaeo-uplift, Sichuan Basin. Natural Gas Industry B 2, 314–22. doi: 10.1016/j.ngib.2015.09.004.CrossRefGoogle Scholar
Li, D, Ling, H-F, Shields-Zhou, GA, Chen, X, Cremonese, L, Och, L, Thirlwall, M and Manning, CJ (2013a) Carbon and strontium isotope evolution of seawater across the Ediacaran–Cambrian transition: evidence from the Xiaotan section, NE Yunnan, South China. Precambrian Research 225, 128–47. doi: 10.1016/j.precamres.2012.01.002.CrossRefGoogle Scholar
Li, L, Tan, X, Zeng, W, Zhou, T, Yang, Y, Hong, H, Luo, B and Bian, L (2013b) Development and reservoir significance of mud mounds in Sinian Dengying Formation, Sichuan Basin. Petroleum Exploration and Development 40, 714–21. doi: 10.1016/s1876-3804(13)60096-8.CrossRefGoogle Scholar
Lian, C, Qu, F, Tan, X, Li, L, Jin, M, Zeng, W, Ren, Q, Hu, G and Liu, H (2016) Occurrences and formation mechanisms of botryoidal structures from the Sinian Dengying Formation, Sichuan Basin, China. Acta Geologica Sinica (English Edition) 90, 384–5. doi: 10.1111/1755-6724.12666.Google Scholar
Lian, C, Ren, G, Qu, F, Tan, X, Li, L, Zeng, W, Hu, G and Liu, H (2017) Review and prospect on the botryoidal structures from the Sinian Dengying Formation, Sichuan Basin, China. Petroleum 3, 190–6. doi: 10.1016/j.petlm.2016.12.001.CrossRefGoogle Scholar
Lin, X, Peng, J, Yan, J and Hou, Z (2015) A discussion about origin of botryoidal dolostone of the Sinian Dengying Formation in Sichuan Basin. Journal of Palaeogeography 6, 755–70 (in Chinese with English abstract). doi: 10.7605/gdlxb.2015.06.062.Google Scholar
Lin, Z, Wang, Q, Feng, D, Liu, Q and Chen, D (2011) Post-depositional origin of highly 13C-depleted carbonate in the Doushantuo cap dolostone in South China: insights from petrography and stable carbon isotopes. Sedimentary Geology 242, 71–9. doi: 10.1016/j.sedgeo.2011.10.009.CrossRefGoogle Scholar
Lin, S, Zhang, Y, Zhang, L, Tao, X and Wang, M (1986) Body and trace fossils of metazoa and algal macrofossils from the upper Sinian Gaojiashan Formation in southern Shaanxi. Geology of Shaanxi 4, 917 (in Chinese with English abstract).Google Scholar
Linnemann, U, Ovtcharova, M, Schaltegger, U, Gärtner, A, Hautmann, M, Geyer, G, Vickers-Rich, P, Rich, T, Plessen, B, Hofmann, M, Zieger, J, Krause, R, Kriesfeld, L and Smith, J (2019) New high-resolution age data from the Ediacaran–Cambrian boundary indicate rapid, ecologically driven onset of the Cambrian explosion. Terra Nova 31, 4958. doi: 10.1111/ter.12368.CrossRefGoogle Scholar
Liu, X, Fike, D, Li, A, Dong, J, Xu, F, Zhuang, G, Rendle-Bühring, R and Wan, S (2019) Pyrite sulfur isotopes constrained by sedimentation rates: evidence from sediments on the East China Sea inner shelf since the late Pleistocene. Chemical Geology 505, 6675. doi: 10.1016/j.chemgeo.2018.12.014.CrossRefGoogle Scholar
Liu, S, Huang, W, Jansa, LF, Wang, G, Song, G, Zhang, C, Sun, W and Ma, W (2014a) Hydrothermal dolomite in the Upper Sinian (Upper Proterozoic) Dengying Formation, east Sichuan Basin, China. Acta Geologica Sinica 88, 1466–87. doi: 10.1111/1755-6724.12312.Google Scholar
Liu, J, Li, W, Zhang, B, Zhou, H, Yuan, X, Shan, X, Zhang, J, Deng, S, Gu, Z, Fan, R, Wang, Y and Li, X (2015) Sedimentary palaeogeography of the Sinian in Upper Yangtze Region. Journal of Palaeogeography 17, 735–53 (in Chinese with English abstract). doi: 10.7605/gdlxb.2015.06.061.Google Scholar
Liu, Y, Xiao, S, Shao, T, Broce, J and Zhang, H (2014b) The oldest known priapulid-like scalidophoran animal and its implications for the early evolution of cycloneuralians and ecdysozoans. Evolution & Development 16, 155–65. doi: 10.1111/ede.12076.CrossRefGoogle ScholarPubMed
Liu, J, Yang, P, Wang, Z, Zhuo, J and Du, Q (2012) Paleo-weathering crust at the top of Sinian Dengying Formation in northern Guizhou and its petroleum exploration significance. Geology in China 4, 931–8 (in Chinese with English abstract).Google Scholar
Lorens, RB (1981) Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate. Geochimica et Cosmochimica Acta 45, 553–61. doi: 10.1016/0016-7037(81)90188-5.CrossRefGoogle Scholar
Loyd, SJ, Marenco, PJ, Hagadorn, JW, Lyons, TW, Kaufman, AJ, Sour-Tovar, F and Corsetti, FA (2012) Sustained low marine sulfate concentrations from the Neoproterozoic to the Cambrian: insights from carbonates of northwestern Mexico and eastern California. Earth and Planetary Science Letters 339–340, 7994. doi: 10.1016/j.epsl.2012.05.032.CrossRefGoogle Scholar
Loyd, SJ, Marenco, PJ, Hagadorn, JW, Lyons, TW, Kaufman, AJ, Sour-Tovar, F and Corsetti, FA (2013) Local δ34S variability in ~580Ma carbonates of northwestern Mexico and the Neoproterozoic marine sulfate reservoir. Precambrian Research 224, 551–69. doi: 10.1016/j.precamres.2012.10.007.CrossRefGoogle Scholar
Lu, M, Zhu, M, Zhang, J, Shields-Zhou, G, Li, G, Zhao, F, Zhao, X and Zhao, M (2013) The DOUNCE event at the top of the Ediacaran Doushantuo Formation, South China: broad stratigraphic occurrence and non-diagenetic origin. Precambrian Research 225, 86109. doi: 10.1016/j.precamres.2011.10.018.CrossRefGoogle Scholar
Luo, C, Pan, B and Reitner, J (2017) Chambered structures from the Ediacaran Dengying Formation, Yunnan, China: comparison with the Cryogenian analogues and their microbial interpretation. Geological Magazine 154, 1269–84. doi: 10.1017/s001675681700053x.CrossRefGoogle Scholar
Macdonald, FA, McClelland, WC, Schrag, DP and Macdonald, WP (2009) Neoproterozoic glaciation on a carbonate platform margin in Arctic Alaska and the origin of the North Slope subterrane. Geological Society of America Bulletin 121, 448–73. doi: 10.1130/b26401.1.CrossRefGoogle Scholar
Mason, R, Li, Y, Cao, K, Long, Y and She, Z-B (2017) Ediacaran macrofossils in Shunyang Valley, Sixi, Three Gorges District, Hubei Province, China. Journal of Earth Science 28, 614–21. doi: 10.1007/s12583-017-0773-1.CrossRefGoogle Scholar
Mazzullo, SJ (1980) Calcite pseudospar replacive of marine acicular aragonite, and implications for aragonite cement diagenesis. Journal of Sedimentary Research 50, 409–22. doi: 10.1306/212f7a18-2b24-11d7-8648000102c1865d.CrossRefGoogle Scholar
Mazzullo, SJ and Cys, JM (1979) Marine aragonite sea-floor growths and cements in Permian phylloid algal mounds, Sacramento Mountains, New Mexico. Journal of Sedimentary Research 49, 917–36. doi: 10.1306/212f7879-2b24-11d7-8648000102c1865d.Google Scholar
McFadden, KA, Huang, J, Chu, X, Jiang, G, Kaufman, AJ, Zhou, C, Yuan, X and Xiao, S (2008) Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences 105, 3197–202. doi: 10.1073/pnas.0708336105.CrossRefGoogle ScholarPubMed
Meister, P, McKenzie, JA, Vasconcelos, C, Bernasconi, S, Frank, M, Gutjahr, M and Schrag, DP (2007) Dolomite formation in the dynamic deep biosphere: results from the Peru Margin. Sedimentology 54, 1007–32. doi: 10.1111/j.1365-3091.2007.00870.x.CrossRefGoogle Scholar
Meng, F, Ni, P, Schiffbauer, JD, Yuan, X, Zhou, C, Wang, Y and Xia, M (2011) Ediacaran seawater temperature: evidence from inclusions of Sinian halite. Precambrian Research 184, 63–9. doi: 10.1016/j.precamres.2010.10.004.CrossRefGoogle Scholar
Meyer, M, Schiffbauer, JD, Xiao, S, Cai, Y and Hua, H (2012) Taphonomy of the upper Ediacaran enigmatic ribbonlike fossil Shaanxilithes. Palaios 27, 354–72. doi: 10.2110/palo.2011.p11-098r.CrossRefGoogle Scholar
Mo, J, Wang, X, Leng, S, Lin, G, Xiong, J, Xie, L and Zhou, Z (2013) Reservoir characteristics and control factors of Sinian Denying Formation in central Sichuan. Geology in China 40, 1505–13 (in Chinese with English abstract).Google Scholar
Mou, C, Wang, X, Liang, W, Wang, Y and Men, X (2015) Characteristics and genesis of grape-like stone of dolomite in Sinian Dengying Formation in Yangtze region: a case from the first section of Dengying Formation in Yangba, Nanjiang, Sichuan Province. Acta Sedimentologica Sinica 33, 1097–110 (in Chinese with English abstract). doi: 10.14027/j.cnki.cjxb.2015.06.004.Google Scholar
Nagovitsin, KE, Rogov, VI, Marusin, VV, Karlova, GA, Kolesnikov, AV, Bykova, NV and Grazhdankin, DV (2015) Revised Neoproterozoic and Terreneuvian stratigraphy of the Lena-Anabar Basin and north-western slope of the Olenek Uplift, Siberian Platform. Precambrian Research 270, 226–45. doi: 10.1016/j.precamres.2015.09.012.CrossRefGoogle Scholar
Narbonne, GM (2005) The Ediacara Biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences 33, 421–42. doi: 10.1146/annurev.earth.33.092203.122519.CrossRefGoogle Scholar
Narbonne, GM, Xiao, S, Shields, GA and Gehling, JG (2012) The Ediacaran period. In The Geologic Time Scale (eds Gradstein, FM, Ogg, JG, Schmitz, MD and Ogg, GM), pp. 413–35. Boston: Elsevier.CrossRefGoogle Scholar
Oehlert, AM and Swart, PK (2014) Interpreting carbonate and organic carbon isotope covariance in the sedimentary record. Nature Communications 5, 4672. doi: 10.1038/ncomms5672.CrossRefGoogle ScholarPubMed
Pasquier, V, Sansjofre, P, Rabineau, M, Revillon, S, Houghton, J and Fike, DA (2017) Pyrite sulfur isotopes reveal glacial−interglacial environmental changes. Proceedings of the National Academy of Sciences 114, 5941–5. doi: 10.1073/pnas.1618245114.CrossRefGoogle ScholarPubMed
Pelechaty, SM, Grotzinger, JP, Kashirtsev, VA and Zhernovsky, VP (1996a) Chemostratigraphic and sequence stratigraphic constraints on Vendian–Cambrian basin dynamics, northeast Siberian craton. The Journal of Geology 104, 543–63. doi: 10.1086/629851.CrossRefGoogle Scholar
Pelechaty, SM, Kaufman, AJ and Grotzinger, JP (1996b) Evaluation of δ13C chemostratigraphy for intrabasinal correlation: Vendian strata of northeast Siberia. Geological Society of America Bulletin 108, 9921003. doi:10.1130/0016-7606(1996)108<0992:eoccfi>2.3.co;2.2.3.CO;2>CrossRefGoogle Scholar
Peng, J, Zhang, H and Lin, X (2017) Study on characteristics and genesis of botryoidal dolostone of the Upper Sinian Dengying Formation: a case study from Hanyuan region, Sichuan, China. Carbonates and Evaporites 33, 285–99. doi: 10.1007/s13146-017-0343-8.CrossRefGoogle Scholar
Penny, A, Wood, R, Curtis, A, Bowyer, F, Tostevin, R and Hoffman, K-H (2014) Ediacaran metazoan reefs from the Nama Group, Namibia. Science 344, 1504–6. doi: 10.1126/science.1253393.CrossRefGoogle ScholarPubMed
Peters, SE and Gaines, RR (2012) Formation of the ‘Great Unconformity’ as a trigger for the Cambrian explosion. Nature 484, 363–6. doi: 10.1038/nature10969.CrossRefGoogle ScholarPubMed
Pierre, C, Blanc-Valleron, MM, Caquineau, S, März, C, Ravelo, AC, Takahashi, K and Alvarez Zarikian, C (2016) Mineralogical, geochemical and isotopic characterization of authigenic carbonates from the methane-bearing sediments of the Bering Sea continental margin (IODP Expedition 323, Sites U1343–U1345). Deep Sea Research Part II: Topical Studies in Oceanography 125–126, 133–44. doi: 10.1016/j.dsr2.2014.03.011.CrossRefGoogle Scholar
Pruss, SB, Corsetti, FA and Fischer, WW (2008) Seafloor-precipitated carbonate fans in the Neoproterozoic Rainstorm Member, Johnnie Formation, Death Valley Region, USA. Sedimentary Geology 207, 3440. doi: 10.1016/j.sedgeo.2008.03.005.CrossRefGoogle Scholar
Purser, BH, Tucker, ME and Zenger, DH (eds) (2009) Dolomites: A Volume in Honor of Dolomieu. Oxford:Blackwell Scientific.Google Scholar
Qian, Y, He, Z, Li, H, Chen, Y, Jin, T, Sha, X and Li, H (2017) Discovery and discussion on origin of botryoidal dolostone in the Upper Sinian in North Tarim Basin. Journal of Palaeogeography 19, 197210 (in Chinese with English abstract). doi: 10.7605/gdlxb.2017.02.016.Google Scholar
Ries, JB, Fike, DA, Pratt, LM, Lyons, TW and Grotzinger, JP (2009) Superheavy pyrite (δ34Spyr > δ34SCAS) in the terminal Proterozoic Nama Group, southern Namibia: a consequence of low seawater sulfate at the dawn of animal life. Geology 37, 743–6. doi: 10.1130/g25775a.1.CrossRefGoogle Scholar
Rogov, VI, Karlova, GA, Marusin, VV, Kochnev, BB, Nagovitsin, KE and Grazhdankin, DV (2015) Duration of the first biozone in the Siberian hypostratotype of the Vendian. Russian Geology and Geophysics 56, 573–83. doi: 10.1016/j.rgg.2015.03.016.CrossRefGoogle Scholar
Rogov, VI, Marusin, V, Bykova, NV, Goy, Y, Nagovitsin, KE, Kochnev, BB, Karlova, G and Grazhdankin, DV (2012) The oldest evidence of bioturbation on Earth. Geology 40, 395–8. doi: 10.1130/g32807.1.CrossRefGoogle Scholar
Rogov, VI, Marusin, V, Bykova, N, Goy, Y, Nagovitsin, KE, Kochnev, BB, Karlova, G and Grazhdankin, DV (2013a) The oldest evidence of bioturbation on Earth: reply. Geology 41, e290. doi: 10.1130/g34237y.1.CrossRefGoogle Scholar
Rogov, VI, Marusin, V, Bykova, NV, Goy, Y, Nagovitsin, KE, Kochnev, BB, Karlova, G and Grazhdankin, DV (2013b) The oldest evidence of bioturbation on Earth: reply. Geology 41, e300. doi: 10.1130/g34594y.1.CrossRefGoogle Scholar
Sandberg, P (1985) Aragonite cements and their occurrence in ancient limestones. In Carbonate Cements (eds Schneidermann, N and Harris, PM), pp. 3357. Tulsa, Oklahoma: Society for Sedimentary Geology (SEPM) Special Publication no. 36.CrossRefGoogle Scholar
Sawaki, Y, Ohno, T, Tahata, M, Komiya, T, Hirata, T, Maruyama, S, Windley, BF, Han, J, Shu, D and Li, Y (2010) The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the Three Gorges area, South China. Precambrian Research 176, 4664. doi: 10.1016/j.precamres.2009.10.006.CrossRefGoogle Scholar
Saylor, BZ, Kaufman, AJ, Grotzinger, JP and Urban, F (1998) A composite reference section for terminal Proterozoic strata of southern Namibia. Journal of Sedimentary Research 68, 1223–35. doi: 10.2110/jsr.68.1223.CrossRefGoogle ScholarPubMed
Schrag, DP, Higgins, JA, Macdonald, FA and Johnston, DT (2013) Authigenic carbonate and the history of the global carbon cycle. Science 339, 540–3. doi: 10.1126/science.1229578.CrossRefGoogle ScholarPubMed
Shen, B, Xiao, S, Zhou, C, Dong, L, Chang, J and Chen, Z (2017) A new modular palaeopascichnid fossil Curviacus ediacaranus new genus and species from the Ediacaran Dengying Formation in the Yangtze Gorges area of South China. Geological Magazine 154, 1257–68. doi: 10.1017/s001675681700036X.CrossRefGoogle Scholar
Shen, B, Xiao, S, Zhou, C and Yuan, X (2009) Yangtziramulus zhangi new genus and species, a carbonate-hosted macrofossil from the Ediacaran Dengying Formation in the Yangtze Gorges area, South China. Journal of Paleontology 83, 575–87. doi: 10.1666/08-042r1.1.CrossRefGoogle Scholar
Shi, Z, Liang, P, Wang, Y, Hu, X, Tian, Y and Wang, C (2011) Geochemical characteristics and genesis of grapestone in Sinian Dengying Formation in southeastern Sichuan basin. Acta Petrologica Sinica 27, 2263–71 (in Chinese with English abstract).Google Scholar
Shi, Z, Wang, Y, Tian, Y and Wang, C (2013) Cementation and diagenetic fluid of algal dolomites in the Sinian Dengying Formation in southeastern Sichuan Basin. Science China: Earth Sciences 56, 192202. doi: 10.1007/s11430-012-4541-x.CrossRefGoogle Scholar
Si, C, Hao, Y, Zhou, J, Ni, C and Pan, L (2014) Characteristics and controlling factors of reservoir in Sinian Dengying Formation, Sichuan Basin. Journal of Chengdu University of Technology (Science & Technology Edition) 41, 266–73 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2014.03.02.Google Scholar
Siegmund, H and Erdtmann, B-D (1994) Facies and diagenesis of some Upper Proterozoic dolomites of South China. Facies 31, 255–63. doi: 10.1007/bf02536942.CrossRefGoogle Scholar
Spötl, C (2011) Long-term performance of the Gasbench isotope ratio mass spectrometry system for the stable isotope analysis of carbonate microsamples. Rapid Communications in Mass Spectrometry 25, 1683–5. doi: 10.1002/rcm.5037.CrossRefGoogle ScholarPubMed
Steiner, M, Li, G, Qian, Y and Zhu, M (2004) Lower Cambrian small shelly fossils of northern Sichuan and southern Shaanxi (China), and their biostratigraphic importance. Geobios 37, 259–75. doi: 10.1016/j.geobios.2003.08.001.CrossRefGoogle Scholar
Sun, W (1986) Late Precambrian pennatulids (sea pens) from the eastern Yangtze Gorge, China: Paracharnia gen. nov. Precambrian Research 31, 361–75. doi: 10.1016/0301-9268(86)90040-9.Google Scholar
Talbot, M and Kelts, K (1986) Primary and diagenetic carbonates in the anoxic sediments of Lake Bosumtwi, Ghana. Geology 14, 912–6. doi: 10.1130/0091-7613(1986)14<912:padcit>2.0.co;2.2.0.CO;2>CrossRefGoogle Scholar
Tan, X, Xiao, D, Chen, J, Li, L and Liu, H (2015) New advance and enlightenment of eogenetic karstification. Journal of Palaeogeography 17, 441–56 (in Chinese with English abstract). doi: 10.7605/gdlxb.2015.04.037.Google Scholar
Tostevin, R, He, T, Turchyn, AV, Wood, RA, Penny, AM, Bowyer, F, Antler, G and Shields, GA (2017) Constraints on the late Ediacaran sulfur cycle from carbonate associated sulfate. Precambrian Research 290, 113–25. doi: 10.1016/j.precamres.2017.01.004.Google Scholar
Tucker, ME (1982) Precambrian dolomites: petrographic and isotopic evidence that they differ from Phanerozoic dolomites. Geology 10, 712. doi: 10.1130/0091-7613(1982)10<7:PDPAIE>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Tucker, ME (1983) Diagenesis, geochemistry, and origin of a Precambrian dolomite: the Beck Spring Dolomite of eastern California. Journal of Sedimentary Research 53, 1097–119. doi: 10.1306/212f8323-2b24-11d7-8648000102c1865d.Google Scholar
Tucker, ME (2009) Sedimentary Petrology: An Introduction to the Origin of Sedimentary Rocks. Oxford: Blackwell Science Ltd.Google Scholar
Ufnar, DF, Gröcke, DR and Beddows, PA (2008) Assessing pedogenic calcite stable-isotope values: can positive linear covariant trends be used to quantify palaeo-evaporation rates? Chemical Geology 256, 4651. doi: 10.1016/j.chemgeo.2008.07.022.CrossRefGoogle Scholar
Vishnevskaya, IA, Letnikova, EF, Vetrova, NI, Kochnev, BB and Dril, SI (2017) Neoproterozoic sedimentary rocks of Khorbusuonka Group (Olenek Uplift, Russia): chemostratigraphy and U–Pb dating of detrital zircons by LA ICP-MS method. Gondwana Research 51, 255–71. doi: 10.1016/j.gr.2017.07.010.CrossRefGoogle Scholar
Wang, Z, Jiang, H, Wang, T, Lu, W, Gu, Z, Xu, A, Yang, Y and Xu, Z (2014a) Paleo-geomorphology formed during Tongwan tectonization in Sichuan Basin and its significance for hydrocarbon accumulation. Petroleum Exploration and Development 41, 338–45. doi: 10.1016/S1876-3804(14)60038-0.CrossRefGoogle Scholar
Wang, G, Liu, S, Ma, Y, Xu, G and Cai, X (2010) Characteristics of subaerial karstification and late reconstruction in the Dengying Formation, Sichuan basin, southwestern China. Journal of Earth Science 21, 290302. doi: 10.1007/s12583-010-0093-1.CrossRefGoogle Scholar
Wang, X, Mu, S, Fang, S, Huang, J and Hou, F (2000) Evolution of porosity in the process of Sinian dolostone diagenesis in Southwest Sichuan. Acta Sedimentologica Sinica 18, 549–54 (in Chinese with English abstract).Google Scholar
Wang, X, Shi, X, Jiang, G and Tang, D (2014b) Organic carbon isotope gradient and ocean stratification across the late Ediacaran–Early Cambrian Yangtze Platform. Science China: Earth Sciences 57, 919–29. doi: 10.1007/s11430-013-4732-0.CrossRefGoogle Scholar
Wang, S and Xiang, F (1999) The origin of the dolostones from the Sinian Dengying Formation in the Ziyang district, Sichuan. Sedimentary Facies and Palaeogeography 19, 21–9 (in Chinese with English abstract).Google Scholar
Wang, W, Yang, Y, Wen, L, Luo, B, Luo, W, Xia, M and Sun, S (2016) A study of sedimentary characteristics of microbial carbonate: a case study of the Sinian Dengying Formation in Gaomo area, Sichuan Basin. Geology in China 43, 306–18 (in Chinese with English abstract). doi: 10.12029/gc20160123.Google Scholar
Wang, W, Zhou, C, Yuan, X, Chen, Z and Xiao, S (2012) A pronounced negative δ13C excursion in an Ediacaran succession of western Yangtze Platform: a possible equivalent to the Shuram event and its implication for chemostratigraphic correlation in South China. Gondwana Research 22, 1091–101. doi: 10.1016/j.gr.2012.02.017.CrossRefGoogle Scholar
Warren, LV, Fairchild, TR, Gaucher, C, Boggiani, PC, Poire, DG, Anelli, LE and Inchausti, JC (2011) Corumbella and in situ Cloudina in association with thrombolites in the Ediacaran Itapucumi Group, Paraguay. Terra Nova 23, 382–9. doi: 10.1111/j.1365-3121.2011.01023.x.CrossRefGoogle Scholar
Wehrmann, LM, Risgaard-Petersen, N, Schrum, HN, Walsh, EA, Huh, Y, Ikehara, M, Pierre, C, D’hondt, S, Ferdelman, TG, Ravelo, AC, Takahashi, K and Zarikian, CA (2011) Coupled organic and inorganic carbon cycling in the deep subseafloor sediment of the northeastern Bering Sea Slope (IODP Exp. 323). Chemical Geology 284, 251–61. doi: 10.1016/j.chemgeo.2011.03.002.CrossRefGoogle Scholar
Wei, G-Y, Planavsky, NJ, Tarhan, LG, Chen, X, Wei, W, Li, D and Ling, H-F (2018) Marine redox fluctuation as a potential trigger for the Cambrian explosion. Geology 46, 587–90. doi: 10.1130/G40150.1.CrossRefGoogle Scholar
Wen, L, Wang, W, Zhang, J and Luo, B (2017) Classification of Sinian Dengying Formation and sedimentary evolution mechanism of Gaoshiti-Moxi area in central Sichuan Basin. Acta Petrologica Sinica 33, 1285–94 (in Chinese with English abstract).Google Scholar
Wood, R (2016) Palaeoecology of Ediacaran metazoan reefs. In Earth System Evolution and Early Life: a Celebration of the Work of Martin Brasier (eds Brasier, AT, McIlroy, D and McLoughlin, N), pp. 195210. Geological Society of London, Special Publication no. 448.Google Scholar
Wood, RA, Grotzinger, JP and Dickson, J (2002) Proterozoic modular biomineralized metazoan from the Nama Group, Namibia. Science 296, 2383–6. doi: 10.1126/science.1071599.CrossRefGoogle ScholarPubMed
Wood, R, Ivantsov, AY and Zhuravlev, AY (2017a) First macrobiota biomineralization was environmentally triggered. Proceedings of the Royal Society B: Biological Sciences 284, 20170059. doi: 10.1098/rspb.2017.0059.CrossRefGoogle ScholarPubMed
Wood, RA, Poulton, SW, Prave, AR, Hoffmann, KH, Clarkson, MO, Guilbaud, R, Lyne, JW, Tostevin, R, Bowyer, F, Penny, AM, Curtis, A and Kasemann, SA (2015) Dynamic redox conditions control late Ediacaran metazoan ecosystems in the Nama Group, Namibia. Precambrian Research 261, 252–71. doi: 10.1016/j.precamres.2015.02.004.CrossRefGoogle Scholar
Wood, RA, Zhuravlev, AY, Sukhov, SS, Zhu, M and Zhao, F (2017b) Demise of Ediacaran dolomitic seas marks widespread biomineralization on the Siberian Platform. Geology 45, 2730. doi: 10.1130/g38367.1.CrossRefGoogle Scholar
Wray, JL and Daniels, F (1957) Precipitation of calcite and aragonite. Journal of the American Chemical Society 79, 2031–4. doi: 10.1021/ja01566a001.CrossRefGoogle Scholar
Xi, X (1987) Characteristic and environments of Sinian evaporite in Southern Sichuan, China. In Lecture Notes in Earth Sciences: Evaporite Basins (ed. Peryt, TM), pp. 23–9. Berlin: Springer-Verlag.Google Scholar
Xiang, F, Cheng, H and Zhang, J (2001) Paleokarst and its characteristics of Dengying Formation in Ziyang area. Acta Sedimentologica Sinica 19, 421–4 (in Chinese with English abstract).Google Scholar
Xiao, S, Narbonne, GM, Zhou, C, Laflamme, M, Grazhdankin, DV, Moczydłowska-Vidal, M and Cui, H (2016) Toward an Ediacaran time scale: problems, protocols, and prospects. Episodes 39, 540–55. doi: 10.18814/epiiugs/2016/v39i4/103886.CrossRefGoogle Scholar
Xiao, S, Shen, B, Zhou, C, Xie, G and Yuan, X (2005) A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan. Proceedings of the National Academy of Sciences of the United States of America 102, 10227–32. doi: 10.1073/pnas.0502176102.CrossRefGoogle ScholarPubMed
Xue, Y, Cao, R, Tang, T, Yin, L, Yu, C and Yang, J (2001) The Sinian stratigraphic sequence of the Yangtze region and correlation to the late Precambrian strata of North China. Journal of Stratigraphy 25, 207–34 (in Chinese with English abstract).Google Scholar
Yang, S, Chen, H, Zhong, Y, Zhu, X, Chen, A, Wen, H, Xu, S and Wu, C (2017) Microbolite of Late Sinian and its response for Tongwan Movement episode I in Southwest Sichuan, China. Acta Petrologica Sinica 33, 1148–58 (in Chinese with English abstract).Google Scholar
Zhang, Y (1980) Origin of the botryoidal textures in the Sinian dolostones. Petroleum Geology & Experiment 4, 40–3 (in Chinese).Google Scholar
Zhang, L (1986) A discovery and preliminary study of the late stage of late Gaojiashan biota from Sinian in Ningqiang County, Shaanxi. Bulletin of the Xi’an Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences 13, 6788 (in Chinese with English abstract).Google Scholar
Zhang, T, Chu, X, Zhang, Q, Feng, L and Huo, W (2004) The sulfur and carbon isotopic records in carbonates of the Dengying Formation in the Yangtze Platform, China. Acta Petrologica Sinica 20, 717–24 (in Chinese with English abstract).Google Scholar
Zhang, P, Hua, H and Liu, W (2014a) Isotopic and REE evidence for the paleoenvironmental evolution of the late Ediacaran Dengying Section, Ningqiang of Shaanxi Province, China. Precambrian Research 242, 96111. doi: 10.1016/j.precamres.2013.12.011.CrossRefGoogle Scholar
Zhang, J, Jones, B, Pan, L, Zhou, J, Qin, Y, Hao, Y and Wu, M (2014b) Origin of botryoidal dolostone of the Sinian Dengying Formation in Sichuan Basin. Journal of Palaeogeography 16, 715–25 (in Chinese with English abstract). doi: 10.7605/gdlxb.2014.05.057.Google Scholar
Zhang, F, Xiao, S, Kendall, B, Romaniello, SJ, Cui, H, Meyer, M, Gilleaudeau, GJ, Kaufman, AJ and Anbar, AD (2018) Extensive marine anoxia during the terminal Ediacaran Period. Science Advances 4, eaan8983. doi: 10.1126/sciadv.aan8983.CrossRefGoogle ScholarPubMed
Zhang, H, Xiao, S, Liu, Y, Yuan, X, Wan, B, Muscente, AD, Shao, T, Gong, H and Cao, G (2015) Armored kinorhynch-like scalidophoran animals from the early Cambrian. Scientific Reports 5, 16521. doi: 10.1038/srep16521.CrossRefGoogle ScholarPubMed
Zhou, C, Guan, C, Cui, H, Ouyang, Q and Wang, W (2016) Methane-derived authigenic carbonate from the lower Doushantuo Formation of South China: implications for seawater sulfate concentration and global carbon cycle in the early Ediacaran ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 461, 145–55. doi: 10.1016/j.palaeo.2016.08.017.CrossRefGoogle Scholar
Zhou, C and Xiao, S (2007) Ediacaran δ13C chemostratigraphy of South China. Chemical Geology 237, 89108. doi: 10.1016/j.chemgeo.2006.06.021.CrossRefGoogle Scholar
Zhu, D, Jin, Z, Sun, D, Peng, Y, Zhang, R and Yuan, Y (2014a) Hydrothermally dolomitized reservoir bed in Sinian Dengying Formation, northern China: an example from Central Guizhou Uplift. Chinese Journal of Geology 49, 161–75 (in Chinese with English abstract). doi: 10.3969/j.issn.0563-5020.2014.01.012.Google Scholar
Zhu, D, Jin, Z, Zhang, R, Zhang, D, He, Z and Li, S (2014b) Characteristics and developing mechanism of Sinian Dengying Formation dolomite reservoir with multi-stage karst. Earth Science Frontiers 21, 335–45 (in Chinese with English abstract). doi: 10.13745/j.esf.2014.06.032.Google Scholar
Zhu, M, Lu, M, Zhang, J, Zhao, F, Li, G, Yang, A, Zhao, X and Zhao, M (2013) Carbon isotope chemostratigraphy and sedimentary facies evolution of the Ediacaran Doushantuo Formation in western Hubei, South China. Precambrian Research 225, 728. doi: 10.1016/j.precamres.2011.07.019.CrossRefGoogle Scholar
Zhu, D, Zhang, D, Li, S, Feng, J, Sun, D, Lin, J and Zhang, R (2015) Development genesis and characteristics of karst reservoirs in lower assemblage in Sichuan Basin. Marine Origin Petroleum Geology 1, 3344 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2015.01.005.Google Scholar
Zhu, M, Zhang, J and Yang, A (2007) Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology 254, 761. doi: 10.1016/j.palaeo.2007.03.025.CrossRefGoogle Scholar
Zhuravlev, AY, Liñán, E, Vintaned, JAG, Debrenne, F and Fedorov, AB (2012) New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian Platform and Spain. Acta Palaeontologica Polonica 57, 205–24. doi: 10.4202/app.2010.0074.Google Scholar
Zhuravlev, AY and Wood, RA (2008) Eve of biomineralization: controls on skeletal mineralogy. Geology 36, 923–6. doi: 10.1130/g25094a.1.CrossRefGoogle Scholar
Supplementary material: File

Cui et al. supplementary material

Table S1

Download Cui et al. supplementary material(File)
File 618.5 KB