Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T21:36:29.441Z Has data issue: false hasContentIssue false

SHRIMP zircon study of a micromonzodiorite dyke in the Karkonosze Granite, Sudetes (SW Poland): age constraints for late Variscan magmatism in Central Europe

Published online by Cambridge University Press:  29 July 2009

MAREK AWDANKIEWICZ*
Affiliation:
Wrocław University, Institute of Geological Sciences, ul. Cybulskiego 30, 50-205 Wrocław, Poland
HONORATA AWDANKIEWICZ
Affiliation:
Polish Geological Institute, Lower Silesian Branch, al. Jaworowa 19, 53-122 Wrocław, Poland
RYSZARD KRYZA
Affiliation:
Wrocław University, Institute of Geological Sciences, ul. Cybulskiego 30, 50-205 Wrocław, Poland
NICKOLAY RODIONOV
Affiliation:
Centre of Isotopic Research, A. P. Karpinsky All-Russian Geological Research Institute (VSEGEI), 74 Sredny Pr., St Petersburg, 199 106, Russia
*
Author for correspondence: marek.awdankiewicz@ing.uni.wroc.pl

Abstract

The large Variscan Karkonosze Granite in the West Sudetes, representative of the vast Variscan granite plutonism in Central Europe and located adjacent to regional tectonic suture and strike-slip-zones, has been difficult to date precisely; a range of published data varies between c. 304 and 328 Ma. However, the granite is cut by locally numerous lamprophyre and other dykes. Dating of the dyke rocks, emplaced shortly after the granite intrusion and cooled more rapidly, provides a promising tool for the verification of published SHRIMP results on the granite itself. SHRIMP zircon geochronology of a studied micromonzodiorite dyke indicates substantial admixture of inherited zircons of c. 2.0, 1.4 Ga (207Pb–206Pb minimum ages), and c. 570 (and 500?) Ma. The average concordia age of the main magmatic population of the zircons in the dyke is 313 ± 3 Ma (2σ); however, the true magmatic age might be older, around 318 Ma. This would constrain the age of the hypabyssal magmatism in the Karkonosze Massif and the minimum age of the host Karkonosze Granite. Thus, the Karkonosze Granite is confirmed as representative of an early phase of Variscan granite plutonic activity in the central-European Variscides.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aleksandrowski, P., Kryza, R., Mazur, S. & Żaba, J. 1997. Kinematic data on major Variscan strike-slip faults and shear zones in the Polish Sudetes, northeast Bohemian Massif. Geological Magazine 134, 727–39.CrossRefGoogle Scholar
Awdankiewicz, M. 2007. Late Palaeozoic lamprophyres and associated mafic subvolcanic rocks of the Sudetes (SW Poland): petrology, geochemistry and petrogenesis. Geologia Sudetica 39, 1197.Google Scholar
Awdankiewicz, M., Awdankiewicz, H. & Kryza, R. 2005. Petrology of mafic and felsic dykes from the eastern part of the Karkonosze Massif. Mineralogical Society of Poland, Special Papers 26, 111–14.Google Scholar
Awdankiewicz, M., Awdankiewicz, H., Kryza, R. & Rodionov, N. 2007. Preliminary SHRIMP zircon age of the micromonzodiorite dyke from Bukowiec: age constraint for the Karkonosze Granite (Polish Sudetes). Mineralogia Polonica, Special Papers 31, 5760.Google Scholar
Barbarin, B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46, 605–25.CrossRefGoogle Scholar
Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. N., Davis, D. W., Korsch, R. J. & Foudoulis, C. 2003. TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chemical Geology 200, 155–70.CrossRefGoogle Scholar
Borkowska, M. 1966. Petrografia granitu Karkonoszy. Geologia Sudetica 2, 7119 (in Polish, French summary).Google Scholar
Cloos, H. 1925. Einführung in die tektonische Behandlung magmatischer Erscheinungen (Granittektonik). I Spezieller Teil. Das Riesengebirge in Schlesien, pp. 1194. Berlin.Google Scholar
Diot, H., Mazur, S. & Couturie, J. P. 1994. Magmatic structures in the Karkonosze granite and their relation to tectonic structures in the eastern metamorphic cover. In Igneous activity and metamorphic evolution of the Sudetes area (ed. Kryza, R.), pp. 36–9. Wrocław University.Google Scholar
Duthou, J. L., Couturie, J. P., Mierzejewski, M. P. & Pin, C. 1991. Next dating of granite sample from the Karkonosze Mountains using Rb–Sr total rock isochron method. Przegląd Geologiczny 2, 75–9 (in Polish with English summary).Google Scholar
Franke, W., Haak, V., Oncken, O. & Tanner, D. 2000. Orogenic processes: quantification and modeling in the Variscan Belt. In Orogenic processes: quantification and modeling in the Variscan Belt (eds Franke, W., Haak, V., Oncken, O. & Tanner, D.), pp. 13. Geological Society of London, Special Publication no. 179.Google Scholar
Grad, M., Janik, T., Guterch, A., Środa, P., Czuba, W., EUROBRIDGE ‘94–97, POLONAISE ‘97 & CELEBRATION 2000 Seismic Working Groups. 2006. Lithospheric structure of the western part of the East European Craton investigated by deep seismic profiles. Geological Quarterly 50, 922.Google Scholar
Klomínský, J. 1969. The Krkonoše–Jizera granitoid massif. Sborník geologických věd 15, 1134.Google Scholar
Kröner, A., Hegner, E., Hammer, J., Haase, G., Bielicki, K.-H., Krauss, M. & Eidam, J. 1994. Geochronology and Nd–Sm systematics of Lusatian granitoids: significance for the evolution of the Variscan orogen in east-central Europe. Geologische Rundschau 83, 357–76.CrossRefGoogle Scholar
Kröner, A., Jaeckel, P., Hegner, E. & Opletal, M. 2001. Single zircon ages and whole-rock Nd isotopic systematics of early Palaeozoic granitoid gneisses from the Czech and Polish Sudetes (Jizerské hory, Krkonoše Mountains and Orlice-Snĕžník Complex). International Journal of Earth Sciences (Geologische Rundschau) 90, 304–24.CrossRefGoogle Scholar
Kusiak, M. A., Dunkley, D. J., Słaby, E., Budzyń, B. & Martin, H. 2008 a. U–Pb chronology of zircon from granites of the Karkonosze Pluton, NE Bohemian Massif. 4th SHRIMP workshop, Saint Petersburg, Russia, abstract volume, pp. 70–80.Google Scholar
Kusiak, M. A., Dunkley, D. J., Słaby, E., Budzyń, B. & Martin, H. 2008 b. Metasomatized Zircon in Equigranular Granite from the Karkonosze Pluton, NE Bohemian Massif. In Mineral Equilibria, Metasomatism and Mass Transport: Evolution and Stabilisation of Rock on a Fluid-Rich World. Proceedings from MIMET 2008 Workshop, Smolenice, Slovak Republic, April 8–10 (eds Harlov, D. & Broska, I.), pp. 8790. Bratislava: Geological Institute, Slovak Academy of Sciences.Google Scholar
Larionov, A. N., Andreichev, V. A. & Gee, D. G. 2004. The Vendian alkaline igneous suite of northern Timan: ion microprobe U–Pb zircon ages of gabbros and syenite. In The Neoproterozoic Timanide Orogen of Eastern Baltica (eds Gee, D. G. & Pease, V. L.), pp. 6974. Geological Society of London, Memoir no. 30.Google Scholar
Linnemann, U., McNaughton, N. J., Romer, R. L., Gehmlich, M., Drost, K. & Tonk, C. 2004. West African provenance for Saxo-Thuringia (Bohemian Massif): Did Armorica ever leave pre-Pangean Gondwana? U/Pb-SHRIMP zircon evidence and the Nd-isotopic record. International Journal of Earth Sciences 93, 683705.CrossRefGoogle Scholar
Ludwig, K. R. 2005 a. SQUID 1.12 A User's Manual. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, pp. 122. http://www.bgc.org/klprogrammenu.html.Google Scholar
Ludwig, K. R. 2005 b. User's Manual for ISOPLOT/Ex 3.22. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, pp. 171, http://www.bgc.org/klprogrammenu.html.Google Scholar
Machowiak, K. & Armstrong, R. 2007. SHRIMP U–Pb zircon age from the Karkonosze granite. Mineralogia Polonica, Special Papers 31, 193–6.Google Scholar
Marheine, D., Kachlik, V., Maluski, H., Patocka, F. & Żelaźniewicz, A. 2002. New 40Ar/39Ar ages in the West Sudetes (Bohemian Massif): constraints on the Variscan polyphase tectonothermal development. In Palaeozoic Amalgamation of Central Europe (eds Winchester, J. A., Pharaoh, T. C. & Verniers, J.), pp. 133–55. Geological Society of London, Special Publication no. 201.Google Scholar
Mazur, S. & Aleksandrowski, P. 2001. The Tepla(?)/Saxothuringian suture in the Karkonosze-Izera Massif, Western Sudetes, Central European Variscides. International Journal of Earth Sciences (Geologische Rundschau) 90, 341–60.CrossRefGoogle Scholar
Mazur, S., Aleksandrowski, P., Kryza, R. & Oberc-Dziedzic, T. 2006. The Variscan Orogen in Poland. Geological Quarterly 50, 89118.Google Scholar
Mierzejewski, M. P. & Oberc-Dziedzic, T. 1990. The Izera-Karkonosze Block and its tectonic development. Neues Jahrbuch für Mineralogie, Geologie und Palaeontologie, Abhandlungen 179, 197222.Google Scholar
Oberc-Dziedzic, T., Kryza, R., Mochnacka, K. & Larionov, A. 2008. Ordovician passive continental margin magmatism in the Central-European Variscides: U–Pb zircon data from the SE part of the Karkonosze-Izera Massif, Sudetes, SW Poland. International Journal of Earth Sciences, doi: 10.1007/s00531-008-0382-4, in press.CrossRefGoogle Scholar
Pin, C., Mierzejewski, M. P. & Duthou, J. L. 1987. Isochronous age Rb/Sr of Karkonosze granite from the quarry Szklarska Poręba Huta and significance of initial 87Sr/86Sr in this granite. Przegląd Geologiczny 35, 512–17 (in Polish with English summary).Google Scholar
Pin, C., Kryza, R., Oberc-Dziedzic, T., Mazur, S., Turniak, K. & Waldhausrová, J. 2007. The diversity and geodynamic significance of Late Cambrian (ca. 500 Ma) felsic anorogenic magmatism in the northern part of the Bohemian Massif: a review based on Sm–Nd isotope and geochemical data. In The Geology of Peri-Gondwana: Avalonian-Cadomian terranes, adjoining cratons, and the Rheic Ocean (eds Linnemann, U., Kraft, P., Nance, D. & Zulauf, G.), pp. 209–30. Geological Society of America, Special Publication no. 423.Google Scholar
Słaby, E. & Martin, H. 2008. Mafic and Felsic Magma Interaction in Granites: the Hercynian Karkonosze Pluton (Sudetes, Bohemian Massif). Journal of Petrology 49, 353–91.CrossRefGoogle Scholar
Słaby, E., Galbarczyk-Gąsiorowska, L., Seltmann, R. & Müller, A. 2007. Alkali feldspar megacryst growth: Geochemical modeling. Mineralogy and Petrology 89, 129.CrossRefGoogle Scholar
Stacey, J. S. & Kramers, J. D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207–21.CrossRefGoogle Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.CrossRefGoogle Scholar
Turniak, K., Tichomirova, M. & Bombach, K. 2005. Zircon Pb-evaporation ages of granitoids from the Strzegom-Sobótka Massif (SW Poland). Mineralogical Society of Poland, Special Papers 25, 241–5.Google Scholar
Turniak, K., Tichomirova, M. & Bombach, K. 2006. Pb-evaporation zircon ages of granitoids from the Strzelin Massif (SW Poland). Mineralogical Society of Poland, Special Papers 29, 212–15.Google Scholar
Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Von Quadt, A., Roddick, J. C. & Spiegel, W. 1995. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostandard Newsletter 19, 123.CrossRefGoogle Scholar
Wilamowski, A. 1998. Geotectonic environment of the Karkonosze and Tatra granite intrusions based on geochemical data. Archiwum Mineralogiczne 51, 261–71 (in Polish with English abstract).Google Scholar
Williams, I. S. 1998. U–Th–Pb Geochronology by ion microprobe. In Applications of Microanalytical Techniques to Understanding Mineralizing Processes (eds McKibben, M. A., Shanks III, W. C. & Ridley, W. I.), pp. 135. Society of Economic Geologists, Review in Economic Geology 7.Google Scholar
Winchester, J. A. & PACE TMR Network Team. 2002. Palaeozoic amalgamation of Central Europe: new results from recent geological and geophysical investigations. Tectonophysics 360, 521.CrossRefGoogle Scholar
Žák, J. & Klomínský, J. 2007. Magmatic structures in the Krkonoše–Jizera Plutonic Complex, Bohemian Massif: evidence for localized multiphase flow and small-scale thermal–mechanical instabilities in a granitic magma chamber. Journal of Volcanology and Geothermal Research 164, 254–67.CrossRefGoogle Scholar
Zeh, A., Braetz, H., Millar, I. L. & Williams, I. S. 2001. A combined zircon SHRIMP and Sm–Nd isotope study of high-grade paragneisses from the Mid-German Crystalline Rise; evidence for northern Gondwanan and Grenvillian provenance. Journal of the Geological Society, London 158, 983–94.CrossRefGoogle Scholar