Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T22:52:18.180Z Has data issue: false hasContentIssue false

Sinistral transport along the Trans-European Suture Zone: detrital zircon–rutile geochronology and sandstone petrography from the Carboniferous flysch of the Pontides

Published online by Cambridge University Press:  29 September 2010

NİLGÜN OKAY*
Affiliation:
İstanbul Teknik Üniversitesi, Maden Fakültesi, Jeoloji Müh. Bölümü, Maslak 34469 İstanbul, Turkey
THOMAS ZACK
Affiliation:
Institut für Geowissenschaften, Universität Mainz, Becherweg 21, 55128 Mainz, Germany
ARAL I. OKAY
Affiliation:
İstanbul Teknik Üniversitesi, Avrasya Yerbilimleri Enstitüsü, Maslak 34469 İstanbul, Turkey
MATTHIAS BARTH
Affiliation:
Institut für Geowissenschaften, Universität Mainz, Becherweg 21, 55128 Mainz, Germany
*
Author for correspondence: okayn@itu.edu.tr

Abstract

The Lower Carboniferous flysch of the Istanbul Zone in Turkey is an over 1500 m thick turbiditic sandstone–shale sequence marking the onset of the Variscan deformation in the Pontides. It overlies Lower Carboniferous black cherts and is unconformably overlain by Lower Triassic continental sandstones and conglomerates. The petrography of the Carboniferous sandstones and the geochronology and geochemistry of the detrital zircons and rutiles were studied to establish the provenance of the clastic rocks. The sandstones are feldspathic to lithic greywackes and subgreywackes with approximately equal amounts of quartz, feldspar and lithic clasts. The amount of quartz and lithic fragments decreases upwards in the sequence at the expense of feldspar. The lithic fragments are dominated by intermediate volcanic rocks, followed by metamorphic and sedimentary rock fragments. Coarse lithic fragments are generally granitoidic. In the discrimination diagrams, sandstone samples lie mainly in the field of dissected arc. A total of 218 detrital zircons and 35 detrital rutiles from four sandstone samples were analysed with laser ablation ICP-MS. The detrital zircons show a predominantly bimodal age distribution with Late Devonian to Early Carboniferous (390 to 335 Ma) and Cambrian–Neoproterozoic (640 to 520 Ma) ages. The remaining 9 % of the analysed zircons are in the 1700–2750 Ma range; zircons of the 700–1700 Ma age range are absent. The REE patterns and Th/U ratios of the zircons are consistent with a magmatic origin. With one exception (Neoproterozoic), the rutile ages are Late Devonian–Early Carboniferous and their geochemistry indicates that they were derived from amphibolite-facies metamorphic rocks. Sandstone petrography and detrital zircon–rutile ages suggest one dominant source for the Lower Carboniferous sandstones: a Late Devonian to Early Carboniferous magmatic and metamorphic province with overprinted Neoproterozoic basement. Late Devonian–Early Carboniferous magmatic and metamorphic rocks are unknown from the Eastern Mediterranean region. They are, however, widespread in central Europe. The Istanbul Zone is commonly correlated with the Avalonian terrranes in central Europe, which collided with the Armorican terranes during Carboniferous times, resulting in the Variscan orogeny. The Carboniferous flysch of the Istanbul Zone must have been derived from a colliding Armorican terrane, as indicated by the absence of 700–1700 Ma zircons and by Late Devonian–Early Carboniferous magmatism, typical features of the Armorican terranes. This suggests that during Carboniferous times the Istanbul terrane was located close to the Bohemian Massif and has been translated by strike-slip along the Trans-European Suture Zone to its Cretaceous position north of the Black Sea.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aksay, A., Pehlivan, Ş., Gedik, İ., Bilginer, E., Duru, M., Akbaş, B. & Altun, İ. 2002. Geological map of Turkey, Zonguldak sheet, 1:500 000 scale. Maden Tetkik ve Arama Enstitüsü, Ankara.Google Scholar
Anders, B., Reischmann, T. & Kostopoulos, D. 2007. Zircon geochronology of basement rocks from the Pelagonian Zone, Greece: constraints on the pre-Alpine evolution of the westernmost Internal Hellenides. International Journal of Earth Sciences 96, 639–61.Google Scholar
Anthes, G. & Reischmann, T. 2001. Timing of granitoid magmatism in the eastern mid-German crystalline rise. Journal of Geodynamics 31, 119–43.Google Scholar
Banks, C. J. & Robinson, A. G. 1997. Mesozoic strike-slip back-arc basins of the western Black Sea region. In Regional and Petroleum Geology of the Black Sea and Surrounding Region (ed. Robinson, A. G.), pp. 5362. American Association of Petroleum Geologists, Memoir no. 68.Google Scholar
Black, L. P. & Gulson, B. L. 1978. The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. BMR Journal of Australian Geology and Geophysics 3, 227–32.Google Scholar
Bogdanova, S. V., Pashkevich, I. K., Gorbatschev, R. & Orlyuk, M. I. 1996. Riphean rifting and major Paleoproterozoic crustal boundaries in the basement of the East European Craton: geology and geophysics. Tectonophysics 268, 121.Google Scholar
Bozkurt, E., Winchester, J. A., Yigitbaş, E. & Ottley, C. J. 2008. Proterozoic ophiolites and mafic–ultramafic complexes marginal to the Istanbul Block: an exotic terrane of Avalonian affinity in NW Turkey. Tectonophysics 461, 240–51.CrossRefGoogle Scholar
Boztuğ, D. 1992. Lithostratigraphic units and tectonics of the southwestern part of Daday–Devrekani massif, western Pontides, Turkey. Bulletin of the Mineral Research and Exploration, Turkey 114, 122.Google Scholar
Çapkinoğlu, Ş. 2000. Late Devonian (Famennian) conodonts from Denizliköyü, Gebze, Kocaeli, northwestern Turkey. Turkish Journal Earth Sciences 9, 91112.Google Scholar
Çapkinoğlu, Ş. 2005. Upper Devonian (upper Frasnian–lower Famennian) conodont biostratigraphy of the Ayineburnu formation (Istanbul Zone, NW Turkey). Geologica Carpathica 56, 223–36.Google Scholar
Carrigan, C. W., Mukasa, S. B., Haydoutov, I. & Kolcheva, K. 2005. Age of Variscan magmatism from the Balkan sector of the orogen, central Bulgaria. Lithos 82, 125–47.Google Scholar
Carrigan, C. W., Mukasa, S. B., Haydoutov, I. & Kolcheva, K. 2006. Neoproterozoic magmatism and Carboniferous high-grade metamorphism in the Sredna Gora Zone, Bulgaria: an extension of the Gondwana-derived Avalonia–Cadomian belt? Precambrian Research 147, 404–16.CrossRefGoogle Scholar
Chen, F., Siebel, W., Satir, M., Terzioğlu, N. & Saka, K. 2002. Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul Zone. International Journal of Earth Sciences 91, 469–81.CrossRefGoogle Scholar
Claesson, S., Bogdanova, S. V., Bibikova, E. V. & Gorbatschev, R. 2001. Isotopic evidence for Palaeoproterozoic accretion in the basement of the East European Craton. Tectonophysics 339, 118.CrossRefGoogle Scholar
Dean, W. T., Monod, O., Rickards, R. B., Demir, O. & Bultynck, P. 2000. Lower Palaeozoic stratigraphy and palaeontology, Karadere-Zirze area, Pontus Mountains, northern Turkey. Geological Magazine 137, 555–82.CrossRefGoogle Scholar
Dickinson, W. R. 1970. Interpreting detrital modes of greywacke and arkose. Journal of Sedimentary Petrology 40, 695707.Google Scholar
Dickinson, W. R., Beard, L. S., Brakenridge, G. R., Erjavec, J. L., Ferguson, R. C., Inman, K. F., Knepp, R. A., Lindberg, F. A. & Ryberg, P. T. 1983. Provenance of North American Phaneorozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin 94, 222–35.Google Scholar
Dil, N. 1976. Assemblages charactéristiques de Foraminifères du Dévonien supérieur et du Dinantien de Turquie (bassin carbonifère de Zonguldak). Annales de la Société géologique de Belgique 99, 373400.Google Scholar
Evans, I., Hall, S. A., Saribudak, M. A. & Aykol, A. 1991. Preliminary palaeomagnetic results from Palaeozoic rocks of the Istanbul–Zonguldak region, N.W. Turkey. Bulletin of the Technical University of Istanbul 44, 165–90.Google Scholar
Faure, M., Bé Mézème, E., Duguet, M., Cartier, C. & Talbot, J. 2005. Paleozoic tectonic evolution of medio-Europa from the example of the French Massif Central and Massif Armoricain. Journal of the Virtual Explorer, Electronic Edition, vol. 19, paper 5.CrossRefGoogle Scholar
Finger, E., Roberts, M. P., Haunschmid, I. B., Schermaier, A. & Steyrer, H. P. 1997. Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations. Mineralogy and Petrology 61, 6796.Google Scholar
Floyd, P. A., Leveridge, B. E., Franke, W., Shail, R. & Dörr, W. 1990. Provenance and depositional environment of Rhenohercynian synorogenic greywackes from the Giessen Nappe, Germany. Geologische Rundschau 79, 611–26.CrossRefGoogle Scholar
Force, E. R. 1980. The provenance of rutile. Journal of Sedimentary Petrology 50, 485–8.Google Scholar
Göncüoğlu, M. C., Boncheva, I. & Göncüoğlu, Y. 2004. First discovery of middle Tournaisian conodonts in the Griotte-type nodular pelagic limestones, Istanbul area, NW Turkey. Rivista Italiana di Paleontologia e Stratigrafia 110, 431–9.Google Scholar
Görür, N., Monod, O., Okay, A. I., Şengör, A. M. C., Tüysüz, O., Yiğitbaş, E., Sakinç, M. & Akkök, R. 1997. Palaeogeographic and tectonic position of the Carboniferous rocks of the western Pontides (Turkey) in the frame of the Variscan belt. Bulletin de la Société géologique de France 168, 197205.Google Scholar
Gradinaru, E. 1984. Jurassic rocks of north Dobrogea. A depositional–tectonic approach. Revue Roumaine de Geologie, Geophysique et Geographie 28, 6172.Google Scholar
Gradstein, F. M., Ogg, J. G., Smith, A. G., Bleeker, W. & Lourens, L. J. 2004. A new geological time scale with special reference to Precambrian and Neogene. Episodes 27, 83100.CrossRefGoogle Scholar
Haas, W. 1968. Das Alt-Paläozoikum von Bithynien (Nordwest Türkei). Neues Jahrbuch Geologische und Paleontologische Abhandlungen 131, 178242.Google Scholar
Haydoutov, I. & Yanev, S. 1997. The Protomoesian microcontinent of the Balkan Peninsula – a peri-Gondwanaland piece. Tectonophysics 272, 303–13.Google Scholar
Ingersoll, R. V. & Suczek, C. A. 1979. Petrology and provenance of Neogene sand from Nicobar and Bengal fans, DSDP sites 211 and 218. Journal of Sedimentary Petrology 49, 1217–28.Google Scholar
Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D. & Sares, S. W. 1984. The effect of grain size on detrital modes: a test of the Gazzi–Dickinson point-counting method. Journal of Sedimentary Petrology 54, 103–16.Google Scholar
Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211, 4769.Google Scholar
Kalvoda, J., Leichmann, J., Babek, O. & Melichar, R. 2003. Brunovistulian Terrane (Central Europe) and Istanbul Zone (NW Turkey): Late Proterozoic and Paleozoic tectonostratigraphic development and paleogeography. Geologica Carpathica 54, 139–52.Google Scholar
Kalvoda, J., Babek, O., Fatka, O., Leichmann, J., Melichar, R., Nehyba, S. & Spacek, P. 2008. Brunovistulian terrane (Bohemian Massif, Central Europe) from late Proterozoic to late Paleozoic: a review. International Journal of Earth Sciences 97, 497518.Google Scholar
Kalvoda, J. & Bábek, O. 2010. The Margins of Laurussia in Central and Southeast Europe and Southwest Asia. Gondwana Research 17, 526–45.Google Scholar
Kaya, O. 1969. Karbon bei Istanbul. Neues Jahrbuch Geologische und Paleontologische Monatshefte 1969 3, 160–73.Google Scholar
Kaya, O. 1971. The Carboniferous stratigraphy of Istanbul (in Turkish). Türkiye Jeoloji Kurumu Bülteni 14, 143–99.Google Scholar
Kaya, O. & Mamet, B. 1971. Biostratigraphy of the Visean Cebeciköy limestone near Istanbul, Turkey. Journal of Foraminiferal Research 1, 7781.CrossRefGoogle Scholar
Kerey, I. E. 1984. Facies and tectonic setting of the Upper Carboniferous rocks of northwestern Turkey. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. & Robertson, A. H. F.), pp. 123–8. Geological Society of London, Special Publication no. 17.Google Scholar
Kerey, I. E., Kelling, G. & Wagner, R. H. 1986. An outline stratigraphy and palaeobotanical records from the middle Carboniferous rocks of northwestern Turkey. Annales de la Société géologique du Nord CV, 203–16.Google Scholar
Ketin, İ. 1983. A general view of the geology of Turkey. Istanbul Teknik Üniversitesi Matbaası, Istanbul, 596 pp. (in Turkish).Google Scholar
Kroner, U., Mansy, J.-L., Mazur, S., Aleksandrowski, P., Mann, H. P., Huckriede, H., Lacquement, F., Lamarche, J., Ledru, P., Pharaoh, T. C., Zedler, H., Zeh, A. & Zulauf, G. 2008. Variscan Tectonics. In The Geology of Central Europe Volume 1: Precambrian and Palaeozoic (ed. McCann, T.), pp. 599665. Geological Society of London.CrossRefGoogle Scholar
Linnemann, U., McNaughton, N. J., Romer, R. L., Gehmlich, M., Drost, K. & Tonk, C. 2004. West African provenance for Saxo-Thuringia (Bohemian Massif): Did Armorica ever leave pre-Pangean Gondwana? – U/Pb-SHRIMP zircon evidence and the Nd-isotopic record. International Journal of Earth Sciences 93, 683705.Google Scholar
Loboziak, S. & Dil, N. 1973. Sur l'age Westphalien inferieur des couches de charbon sous la faille du Midi de la galerie – 200/34400A des mines de Çaydamar (Turquie) d'apres leur etude palynologique (microspores et megaspores). Review of Palaeobotany and Palynology 15, 287–99.Google Scholar
Luvizotto, G. L., Zack, T., Triebold, S. & von Eynatten, H. 2009. Rutile occurrence and trace element behavior in medium-grade metasedimentary rocks: example from the Erzgebirge, Germany. Mineralogy and Petrology 97, 233–49.CrossRefGoogle Scholar
Meinhold, G., Anders, B., Kostopoulos, D. & Reischmann, T. 2008 a. Rutile chemistry and thermometry as provenance indicator: an example from Chios Island, Greece. Sedimentary Geology 203, 98111.Google Scholar
Meinhold, G., Reischmann, T., Kostopoulos, D., Lehnert, O., Matukov, D. & Sergeev, S. 2008 b. Provenance of sediments during subduction of Palaeotethys: detrital zircon ages and olistolith analysis in Palaeozoic sediments from Chios Island, Greece. Palaeogeography, Palaeoclimatology, Palaeoecology 263, 7191.CrossRefGoogle Scholar
Nance, R. D. & Murphy, J. B. 1994. Contrasting basement isotopic signatures and the palinspastic restoration of peripheral orogens: example from the Neoproterozoic Avalonian–Cadomian belt. Geology 22, 617–20.Google Scholar
Narkiewicz, M. 2007. Development and inversion of Devonian and Carboniferous basins in the eastern part of the Variscan foreland (Poland). Geological Quarterly 51, 231–56.Google Scholar
Neubauer, F. 2002. Evolution of late Neoproterozoic to early Paleozoic tectonic elements in Central and Southeast European Alpine mountain belts: review and synthesis. Tectonophysics 352, 87103Google Scholar
Noble, P. J., Tekin, U. K., Gedik, İ. & Pehlivan, Ş. 2008. Middle to Upper Tournaisian radiolaria of the Baltalimani Formation, Istanbul, Turkey. Journal of Paleontology 82, 3756.CrossRefGoogle Scholar
Okay, A. C. 1947. Geologische und petrographische Untersuchung des Gebietes zwischen Alemdağ, Karlıdağ und Kayışdağ in Kocaeli, Bithynien, Türkei. Istanbul Üniversitesi Fen Fakültesi Mecmuası, Seri B 12, 269–88.Google Scholar
Okay, A. I. & Tüysüz, O. 1999. Tethyan sutures of northern Turkey. In The Mediterranean Basins: Tertiary Extension Within the Alpine Orogen (eds Durand, B., Jolivet, L., Horváth, F. & Séranne, M.), pp. 475515. Geological Society of London, Special Publication no.156.Google Scholar
Okay, A. I., Şengör, A. M. C. & Görür, N. 1994. Kinematic history of the opening the Black Sea and its effect on the surrounding regions. Geology 22, 267–70.2.3.CO;2>CrossRefGoogle Scholar
Okay, A. I., Satir, M., Maluski, H., Siyako, M., Monie, P., Metzger, R. & Akyüz, S. 1996. Paleo- and Neo-Tethyan events in northwest Turkey: geological and geochronological constraints. In Tectonics of Asia (eds Yin, A. & Harrison, M.), pp. 420–41. Cambridge University Press.Google Scholar
Okay, A. I., Satir, M., Tüysüz, O., Akyüz, S. & Chen, F. 2001. The tectonics of the Strandja Massif: Variscan and mid-Mesozoic deformation and metamorphism in the northern Aegean. International Journal of Earth Sciences 90, 217–33.CrossRefGoogle Scholar
Okay, A. I., Monod, O. & Monié, P. 2002. Triassic blueschists and eclogites from northwest Turkey: vestiges of the Paleo-Tethyan subduction. Lithos 64, 155–78.Google Scholar
Okay, A. I., Satir, M. & Siebel, W. 2006. Pre-Alpide orogenic events in the Eastern Mediterranean region. In European Lithosphere Dynamics (eds Gee, D. G. & Stephenson, R. A.), pp. 389405. Geological Society of London, Memoir no. 32.Google Scholar
Okay, A. I., Bozkurt, E., Satir, M., Yiğitbaş, E., Crowley, Q. G. & Shang, C. K. 2008. Defining the southern margin of Avalonia in the Pontides: geochronological data from the Late Proterozoic and Ordovician granitoids from NW Turkey. Tectonophysics 461, 252–64.Google Scholar
Paeckelmann, W. 1938. Neue Beitrage zur Kenntnis des Geologie, Palaontologie und Petrographie der Umgegend von Konstantinople 2. Geologie Thraziens, Bithyniens und der Prinzeninseln. Abhandlungen der preussische geologische Landesanstalt N.F. 168, 202 pp., Berlin.Google Scholar
Pettijohn, F. J., Potter, P. E. & Siever, R. 1987. Sand and Sandstone, 2nd ed. Springer-Verlag, 553 pp.Google Scholar
Pharaoh, T. C. 1999. Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): a review. Tectonophysics 314, 1741.CrossRefGoogle Scholar
Pin, C. & Paquette, J-L. 2002. Le magmatisme basique calcoalcalin d'âge dévono-dinantien du nord du Massif Central, témoin d'une marge active hercynienne: arguments géochimiques et isotopiques Sr:Nd. Geodinamica Acta 15, 6377.Google Scholar
Poller, U., Janak, M., Kohut, M. & Todt, W. 2000. Early Variscan magmatism in the Western Carpathians: U–Pb zircon data from granitoids and orthogneisses of the Tatra Mountains (Slovakia). International Journal of Earth Science 89, 336–49.CrossRefGoogle Scholar
Rutten, M. G. 1969. The Geology of Western Europe. Amsterdam: Elsevier Publishing Company, 520 pp.Google Scholar
Şahin, S. Y., Güngör, Y., Aysal, N. & Öngen, S. 2009. Geochemistry and SHRIMP zircon U–Pb dating of granitoids within the Strandja and İstanbul Zones (NW Turkey). Abstracts, 62nd Geological Congress of Turkey, Ankara, pp. 598–9.Google Scholar
Samson, S. D., D'Lemos, R. S., Miller, B. V. & Hamilton, M. A. 2005. Neoproterozoic palaeogeography of the Cadomia and Avalon terranes: constraints from detrital zircon U–Pb ages. Journal of the Geological Society, London 162, 6571.Google Scholar
Schäfer, J., Neuroth, H., Ahrendt, H., Dörr, W. & Franke, W. 1997. Accretion and exhumation at a Variscan active margin, recorded in the Saxothuringian flysch. Geologische Rundschau 86, 599611.Google Scholar
Schulmann, K., Kröner, A., Hegner, E., Wendt, I., Konopasek, J., Lexa, O. & Stipska, P. 2005. Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan orogen, Bohemian Massif, Czech Republic. American Journal of Science 305, 407–48.CrossRefGoogle Scholar
Shaw, A., Downes, H. & Thirlwall, M. F. 1993. The quartz-diorites of Limousin: elemental and isotopic evidence for Devono-Carboniferous subduction in the Hercynian belt of the French Massif Central. Chemical Geology 107, 118.CrossRefGoogle Scholar
Seghedi, A. 2009. Paleozoic terrane accretion and Mesozoic evolution of the NW margin of the Black Sea. Abstracts, 2nd International Symposium on the Geology of the Black Sea Region, Ankara, pp. 178–9.Google Scholar
Slama, J., Kosler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N. & Whitehouse, M. J. 2008. Plesovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 135.Google Scholar
Stampfli, G. M. & Borel, G. D. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters 196, 1733.Google Scholar
Stern, R. J. 1994. Arc assembly and continental collision in the Neoproterozoic East African Orogen. Annual Reviews of the Earth and Planetary Sciences 22, 319–51.Google Scholar
Sunal, G., Natal'in, B., Satir, M. & Toraman, E. 2006. Paleozoic magmatic events in the Strandja Masif, NW Turkey. Geodinamica Acta 19, 283300.Google Scholar
Sunal, G., Satir, M., Natal'in, B. & Toraman, E. 2008. Paleotectonic position of the Strandja Massif and surrounding continental blocks based on zircon Pb–Pb age studies. International Geology Review 50, 519–45.CrossRefGoogle Scholar
Tait, J. A., Bachtadse, V., Franke, W. & Soffel, H. C. 1997. Geodynamic evolution of the European Variscan Foldbelt: palaeomagnetic and geological constraints. Geologische Rundschau 86, 585–98.Google Scholar
Teipel, U., Eichhorn, R., Loth, G., Rohrmüller, J., Höll, R. & Kennedy, A. 2004. U–Pb SHRIMP and Nd isotopic data from the western Bohemian Massif (Bayerischer Wald, Germany): implications for Upper Vendian and Lower Ordovician magmatism. International Journal of Earth Sciences 93, 782801.Google Scholar
Tomkins, H. S., Powell, R. & Ellis, D. J. 2007. The pressure dependence of the zirconium-in-rutile thermometer. Journal of Metamorphic Geology 25, 703–13.Google Scholar
Topuz, G., Altherr, R., Kalt, A., Satir, M., Werner, O. & Schwartz, W. H. 2004. Aluminous granulites from the Pulur Complex, NE Turkey: a case of partial melting, efficient melt extraction and crystallization. Lithos 72, 183207.Google Scholar
Topuz, G., Altherr, R., Schwartz, W. H., Dokuz, A. & Meyer, H.-P. 2007. Variscan amphibolites-facies rocks from the Kurtoğlu metamorphic complex (Gümüşhane area, Eastern Pontides, Turkey). International Journal of Earth Sciences 96, 861–73.CrossRefGoogle Scholar
Topuz, G., Altherr, R., Siebel, W., Schwarz, W. H., Zack, T., Hasözbek, A., Barth, B, Satir, M. & Şen, C. 2010. Carboniferous high-potassium I-type granitoid magmatism in the Eastern Pontides: the Gümüşhane pluton (NE Turkey). Lithos 116, 92110.Google Scholar
Triebold, S., Von Eynatten, H., Luvizotto, G. & Zack, T. 2007. Deducing source rock lithology from detrital rutile geochemistry: an example from the Erzgebirge, Germany. Chemical Geology 244, 421–36.Google Scholar
Türkecan, A. & Yurtsever, A. 2002. Geological map of Turkey, Istanbul sheet 1:500 000 scale. Maden Tetkik ve Arama Enstitüsü, Ankara.Google Scholar
Ustaömer, P. A. & Rogers, G. 1999. The Bolu Massif: remnant of a pre-Early Ordovician active margin in the west Pontides, northern Turkey. Geological Magazine 136, 579–92.CrossRefGoogle Scholar
Ustaömer, P. A., Mundil, R. & Renne, P. R. 2005. U/Pb and Pb/Pb zircon ages for arc-related intrusions of the Bolu Massif (W Pontides, NW Turkey): evidence for Late Precambrian (Cadomian) age. Terra Nova 17, 215–23.Google Scholar
Ustaömer, P. A., Ustaömer, T., Gerdes, A. & Zulauf, G. 2010. Detrital zircon ages from a Lower Ordovician quartzite of the Istanbul exotic terrane (NW Turkey): evidence for Amazonian affinity. International Journal of Earth Sciences, DOI: 10.1007/s00531-009-0498-1, in press.Google Scholar
Ustaömer, P. A., Ustaömer, T. & Robertson, A. H. F. 2010. Ion Probe U–Pb dating of the Central Sakarya basement: a peri-Gondwana terrane cut by late Lower Carboniferous subduction/collision related granitic magmatism. Geophysical Research Abstracts 12, EGU 2010-5966.Google Scholar
Velichkova, S. H., Handler, R., Neubauer, F. & Ivanov, Z. 2004. Variscan to Alpine tectonothermal evolution of the Central Srednogorie unit, Bulgaria: constraints from Ar-40/Ar-39 analysis. Schweizerische Mineralogische und Petrographische Mitteilungen 84, 133–51.Google Scholar
Vermeesch, P. 2004. How many grains are needed for a provenance study? Earth and Planetary Science Letters 224, 441–51.CrossRefGoogle Scholar
Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Von Quadt, A., Roddick, J. C. & Speigel, W. 1995. 3 natural zircon standards for U–Th–Pb, Lu–Hf, trace-element and REE analyses. Geostandards Newsletter 19, 123.Google Scholar
Yiğitbaş, E., Kerrich, R., Yilmaz, Y., Elmas, A. & Xie, Q. L. 2004. Characteristics and geochemistry of Precambrian ophiolites and related volcanics from the Istanbul–Zonguldak Unit, Northwestern Anatolia, Turkey: following the missing chain of the Precambrian South European suture zone to the east. Precambrian Research 132, 179206.Google Scholar
Yilmaz, I. 1977. The absolute age and genesis of the Sancaktepe granite (Kocaeli peninsula) (in Turkish). Türkiye Jeoloji Kurumu Bülteni 20, 1720.Google Scholar
Zack, T., von Eynatten, H. & Kronz, A. 2004. Rutile geochemistry and its potential use in quantitative provenance studies. Sedimentary Geology 171, 3758.CrossRefGoogle Scholar
Zack, T., Moraes, R. & Kronz, A. 2004. Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contributions to Mineralogy and Petrology 148, 471–88.Google Scholar
Zack, T., Stockli, D. F., Luvizotto, G. L., Barth, M. G., Belousova, E., Wolfe, M. R. & Hinton, R. W. In press. In-situ U/Pb rutile dating by LA-ICP-MS: 208Pb correction and prospects for geological applications. Contributions to Mineralogy and Petrology.Google Scholar
Zapci, C., Akyüz, H. S. & Sunal, G. 2003. An approach to the structural evolution of the Istanbul Zone. In Proceedings of the Symposium on the Geology of the Istanbul Region, pp. 514. Istanbul (in Turkish).Google Scholar