Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T04:56:27.010Z Has data issue: false hasContentIssue false

The Solund–Stavfjord Ophiolite Complex and associated rocks, west Norwegian Caledonides: geology, geochemistry and tectonic environment

Published online by Cambridge University Press:  01 May 2009

H. Furnes
Affiliation:
Geologisk Institutt, Avd. A, Allegt. 41, 5007 Bergen, Norway
K. P. Skjerlie
Affiliation:
Geologisk Institutt, Avd. A, Allegt. 41, 5007 Bergen, Norway
R. B. Pedersen
Affiliation:
Geologisk Institutt, Avd. A, Allegt. 41, 5007 Bergen, Norway
T. B. Andersen
Affiliation:
Institutt for Geologi, P.O. Box 1047, 0316 Blindern, Oslo 3, Norway
C J. Stillman
Affiliation:
Department of Geology, Trinity College, Dublin 2, Ireland
R. J. Suthren
Affiliation:
Department of Geology, Oxford Polytechnic, Oxford OX3 0BP, U.K.
M. Tysseland
Affiliation:
Geologisk Institutt, Avd. A, Allegt. 41, 5007 Bergen, Norway
L. B. Garmann
Affiliation:
Geologisk Institutt, Avd. A, Allegt. 41, 5007 Bergen, Norway

Abstract

Metabasalts of the Upper Ordovician Solund-Stavfjord Ophiolite Complex of the westernmost Norwegian Caledonides, show N-to E-MORB affinity, with high Th/Ta (or Nb) ratios giving evidence of subduction influence. The Solund–Stavfjord Ophiolite Complex is overlain by a heterogeneous assemblage of sedimentary and volcanic rocks, the Stavenes Group, of which the Heggøy Formation of metasandstones and phyllites conformably overlies the metabasalts of the Solund–Stavfjord Ophiolite Complex. The Heggøy Formation contains, in places, abundant metabasalt pillow lavas and minor intrusions, geochemically similar to those of the Solund–Stavfjord Ophiolite Complex, and basic metavolcaniclastites of island arc tholeiite (IAT) composition. This indicates that the Solund–Stavfjord Ophiolite Complex and Heggøy Formation developed in a marginal basin between a continental margin and an active subduction system, for which the present-day Andaman Sea may provide a realistic model. The other magmatic rocks of the Stavenes Group, showing both calc-alkaline and alkaline affinities, are less well time-constrained, but they are thought to represent an advanced stage of the island arc development, and ocean island build-up, respectively.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, T. B., Skjerlie, K. P. & Furnes, H. 1990. The Sunnfjord Melange, evidence of Silurian ophiolite accretion in the west Norwegian Caledonides. Journal of the Geological Society of London 147, 5968.CrossRefGoogle Scholar
Ballard, R. D. & Moore, J. G. 1977. Photographic Atlas of the Mid-Atlantic Ridge Rift Valley. New York: Springer. 114 pp.CrossRefGoogle Scholar
Boyle, J. F. Geological implications of mixed oceanic-metalliferous and continental sediments from the Solund-Stavfjord Ophiolite Complex, West Norway. Norsk Geologisk Tidsskrift (in press).Google Scholar
Brekke, H. & Solberg, P. O. 1987. The geology of Atløy, Sunnfjord, western Norway. Norges Geologiske Undersokelse, Bulletin 410, 7394.Google Scholar
Brunfelt, A. O. & Steinnes, E. 1969. Instrumental activation analyses of silicate rocks with epithermal neutrons. Analytica Chimica Acta 48, 1324.CrossRefGoogle Scholar
Brunfelt, A. O. & Steinnes, E. 1971. A neutron activation scheme developed for the determination of 42 elements in Lunar material. Talanta 18, 1197–208.CrossRefGoogle ScholarPubMed
Bryhni, I. & Lyse, K. 1985. The Kalvåg Mélange, Norwegian Caledonides. In The Caledonide Orogen–Scandinavia and Related Areas (eds Gee, D. G. and Sturt, B. A.), pp. 417–26. New York: Wiley.Google Scholar
Cann, J. R. 1970. Rb, Sr, Y, Zr and Nb in some ocean floor basaltic rocks. Earth and Planetary Science Letters 10, 711.CrossRefGoogle Scholar
Coish, R. A. 1977. Ocean floor metamorphism in the Betts Cove Ophiolite, Newfoundland. Contributions to Mineralogy and Petrology 60, 255–70.CrossRefGoogle Scholar
Coleman, R. G. 1977. Ophiolites. Berlin: Springer. 229 pp.CrossRefGoogle Scholar
Curray, J. R., Moore, D. G., Lawver, L. A., Emmel, F. J., Raitt, R. W., Henry, M. & Kieckhefer, R. 1979. Tectonics of the Andaman Sea and Burma. In Geological and Geophysical Investigations of Continental Margins (eds Watkins, J., Montadert, L. and Dicker-son, P.), pp. 189–98. American Association of Petroleum Geologists Memoir 29.Google Scholar
Curray, J. R., Emmel, F. J., Moore, D. G. & Raitt, R. W. 1982. Structure, tectonics, and geological history of the northeastern Indian Ocean. In The Ocean Basins and Margins, Volume 6, The Indian Ocean (eds Nairn, A. E. M. and Stehli, F. G.), pp. 339450. New York: Plenum Press.Google Scholar
Dungan, M. A., Vance, J. A. & Blanchard, D. P. 1983. Geochemistry of the Shuksan greenschists and blueschists, North Cascades, Washington: variably fractionated and altered metabasalts of oceanic affinity. Contributions to Mineralogy and Petrology 48, 153–69.Google Scholar
Dunning, G. R. & Pedersen, R. B. 1988. U/Pb ages of ophiolites and arc-related plutons of the Norwegian Caledonides: implications for the development of Iapetus. Contributions to Mineralogy and Petrology 98, 1323.CrossRefGoogle Scholar
Flanagan, F.J. 1973. 1972 values for international geological reference standards. Geochimica et Cosmochimica Acta 37, 1189–200.CrossRefGoogle Scholar
Furnes, H. 1972. Meta-hyaloclastite breccias associated with Ordovician pillow lavas in the Solund area, west Norway. Norsk Geologisk Tidsskrift 52, 385407.Google Scholar
Furnes, H. 1973. Variolitic structures in Ordovician pillow lava and its possible significance as an environmental indicator. Geology 1, 2730.2.0.CO;2>CrossRefGoogle Scholar
Furnes, H. 1974. Structural and metamorphic history of the Lower Palaeozoic metavolcanics and associated sediments in the Solund area, Sogn. Norges Geologiske Undersokelse, Bulletin 302, 3374.Google Scholar
Furnes, H., Pedersen, R. B., Cann, J. R., Boyle, J. F., Stillman, C.J. & Suthren, R.J. 1986. Solund–Stavfjorden ofiolittkompleks og overliggende sedimenter-vulkanitter: implikasjoner og tektonisk mijø. 17 e Nordiska Geologmotet 1986, Helsingfors (Abstract), 42.Google Scholar
Furnes, H., Pedersen, R. B., Sundvoll, B., Tysseland, M. & Tumyr, O. 1989. The age, petrography, geochemistry and tectonic setting of the late Caledonian Gåsøy Intrusion, west Norway. Norsk Geologisk Tidsskrift (in press).Google Scholar
Furnes, H. & Skjerlie, F.J. 1972. The significance of primary structures in the Ordovician pillow lava sequence of Western Norway in an understanding of major fold pattern. Geological Magazine 109, 315–22.CrossRefGoogle Scholar
Furnes, H., Skjerlie, F.J. & Tysseland, M. 1976. Plate tectonic model based on greenstone geochemistry in the Late Precambrian-Lower Palaeozoic sequence in the Solund–Stavfjorden area, West Norway. Norsk Geologisk Tidsskrift 56, 161–86.Google Scholar
Gale, G. H. 1975. Ocean floor-type basalts from the Grimeli Formation, Stavenes Group, Sunnfjord. Norges Geologiske Undersokelse 319, 4758.Google Scholar
Grenne, T. & Roberts, D. 1983. Volcanostratigraphy and eruptive products of the Jonsvatn greenstone formation, central Norwegian Caledonides. Norges Geologiske Undersokelse 387, 2138.Google Scholar
Hart, R. A. 1970. Chemical exchange between sea water and deep ocean basalts. Earth and Planetary Science Letters 9, 269–79.CrossRefGoogle Scholar
Hart, S. R., Erlank, A. J. & Kable, E. J. D. 1974. Sea floor basalt alteration: some chemical and Sr-isotopic effects. Contributions to Mineralogy and Petrology 44, 219–30.CrossRefGoogle Scholar
Haskin, L. A., Haskin, M. A., Frey, F. A. & Wildeman, T. R. 1968. Relative and absolute abundances of the rare earths. In Origin and Distribution of the Elements (ed. Ahrens, L. H.), pp. 889912. Oxford: Pergamon Press.CrossRefGoogle Scholar
Hla, Maung. 1987. Transcurrent movements in the Burma–Andaman Sea region. Geology 15, 911–12.Google Scholar
Holm, P. E. 1985. The geochemical fingerprints of different tectonomagmatic environments using hygromagmatophile element abundances of tholeiitic basalts and basaltic andesites. Chemical Geology 51, 303–23.CrossRefGoogle Scholar
Kolderup, N.-H. 1921. Der Mangeritsyenit und umgebende Gesteine zwischen Dalsfjord und Stavfjord in Søndfjord im westlichen Norwegen. Bergen Museum Årbok 1920–21, (5).Google Scholar
Kolderup, N.-H. 1928. Fjellbygningen i kyststrøket mellom Nordfjord og Sognefjord. Bergen Museum Årbok 1928, Naturvitenskapelige rekke Nr. 1.Google Scholar
Langmuir, C. H. & Bender, F. J. 1984. The geochemistry of oceanic basalts in the vicinity of transform faults: observations and implications. Earth and Planetary Science Letters 69, 107–27.CrossRefGoogle Scholar
Ludden, J. N. & Thompson, G. 1979. An evaluation of the behaviour of the rare earth elements during the weathering of sea-floor basalts. Earth and Planetary Science Letters 43, 8592.CrossRefGoogle Scholar
Ludden, J., Gelinas, L. & Trudel, P. 1982. Archean metavolcanics from Rouyn-Noranda district, Abitibi Greenstone Belt, Quebec. 2. Mobility of trace elements and petrogenetic constraints. Canadian Journal of Earth Science 19, 2276–87.CrossRefGoogle Scholar
Milnes, A. G. & Koestler, A. G. 1985. Geological structure of Jotunheimen, southern Norway (Sognefjell-Valdres cross-section). In The Caledonide Orogen – Scandinavia and Related Areas (eds Gee, D. G. and Sturt, B. A.), pp. 457–74. New York: Wiley.Google Scholar
Mitchell-Thome, R. C. 1982. The geological settings and characteristics of the Atlantic islands. Acta Geologica Academiae Scientiarum Hungaricae 25, 395420.Google Scholar
Moores, J. G. 1965. Petrology of deep-sea basalt near Hawaii. American Journal of Science 263, 4053.CrossRefGoogle Scholar
Moores, E. M. 1982. Origin and emplacement of ophiolites. Reviews of Geophysics and Space Physics 20, 735–60.CrossRefGoogle Scholar
Padfield, T. & Gray, A. 1971. Major element rock analyses by X-ray fluorescence – a simple fusion method. N. V. Phillips analytical equipment FS35, Eindhoven.Google Scholar
Pearce, J. A. 1980. Geochemical evidence for the genesis and eruptive setting of lavas from Tethyan ophiolites. Proceedings of the International Ophiolite Symposium, Nicosia 1979, 261–72.Google Scholar
Pedersen, R. B. 1986. The nature and significance of magma chamber margins in ophiolites: examples from the Norwegian Caledonides. Earth and Planetary Science Letters 77, 100–12.CrossRefGoogle Scholar
Pedersen, R. B., Furnes, H. & Dunning, G. 1988. Some Norwegian ophiolite complexes reconsidered. Norges Geologiske Undersokelse, Special Publications 3, 8085.Google Scholar
Pedersen, R. B. & Hertogen, J. Magmatic evolution of the Karmöy Ophiolite Complex, SW Norway – Relationships between MORB-IAT-boninitic-calc-al-kaline and alkaline magmatism. Contributions to Mineralogy and Petrology (in press).Google Scholar
Ray, K. K., Sengupta, S. & Van Den Hul, H. J. 1988. Chemical characters of volcanic rocks from Andaman ophiolite, India. Journal of the Geological Society of London 145, 393400.CrossRefGoogle Scholar
Reusch, H. 1903. Forsteininger i fjeldet på Frøyen. Naturen 1, 160.Google Scholar
Saunders, A. D. 1983. Geochemistry of basalts recovered from the Gulf of California during Leg 65 of the Deep Sea Drilling Project. In Initial Reports of the Deep Sea Drilling Project Leg 65 (eds Lewis, B. T. R., Robinson, P. et al. ), pp. 591621. Washington: U.S. Government Printing Office.Google Scholar
Saunders, A. D., Fornari, D. J., Joron, J-L., Tarney, J. & Treuil, M. 1982. Geochemistry of basic igneous rocks, Gulf of California, Deep Sea Drilling Project Leg 64. In Initial Reports of the Deep Sea Drilling Project Leg 64 (eds Curray, J. R., Moore, D. G. et al. ), pp. 595642. Washington: U.S. Government Printing Office).Google Scholar
Skjerlie, F.J. 1969. The pre-Devonian rocks in the Askvoll – Gaular area and adjacent districts, western Norway. Norges Geologiske Undersokelse, Bulletin 258, 325–59.Google Scholar
Skjerlie, F. J. 1974. The Lower Palaeozoic sequence of the Stavfjord district, Sunnfjord. Norges Geologiske Undersokelse, Bulletin 302, 132.Google Scholar
Skjerlie, K. P., Furnes, H. & Johansen, R.J. 1989. Magmatic development and tectonomagmatic models for the Solund–Stavfjord Ophiolite Complex, West Norwegian Caledonides. Lithos 23, 137–51.CrossRefGoogle Scholar
Staudigel, H. & Hart, S. R. 1983. Alteration of basaltic glass: mechanism and significance for the oceanic crust-seawater budget. Geochimica et Cosmochimica Acta 47, 3750.CrossRefGoogle Scholar
Skjerlie, K. P. & Furnes, H. in press. Evidence for a fossil transform fault in the Solund–Stavfjord Ophiolite Complex, west Norwegian Caledonides. Tectonics.Google Scholar
Tarney, J., Wood, D. A., Saunders, A. D., Cann, J. R. & Varet, J. 1980. Nature of mantle heterogeneity in the North Atlantic: evidence from deep sea drilling. Philosophical Transactions of the Royal Society of London A 297, 179202.Google Scholar
Thompson, R. N., Morrison, M. A., Hendry, G. L. & Parry, S. J. 1984. An assessment of the relative roles of crust and mantle in magma genesis: an elemental approach. Philosophical Transactions of the Royal Society of London A 310, 549–90.Google Scholar
Volpe, A. M., MacDougall, D. & Hawkins, J. W. 1988. Lau Basin basalts (LBB): trace element and Sr-Nd isotopic evidence for heterogeneity in backarc basin mantle. Earth and Planetary Science Letters 90, 174–86.CrossRefGoogle Scholar
Wood, D. A., Joron, J-L. & Treuil, M. 1979. A reappraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth and Planetary Science Letters 45, 326–36.CrossRefGoogle Scholar