Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T08:12:32.723Z Has data issue: false hasContentIssue false

Sourceland controls and dispersal pathways of Holocene muds from boreholes of the Ionian Basin, Calabria, southern Italy

Published online by Cambridge University Press:  11 February 2015

FRANCESCO PERRI*
Affiliation:
Dipartimento di Biologia, Ecologia e Scienze della Terra, Università degli Studi della Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
SALVATORE CRITELLI
Affiliation:
Dipartimento di Biologia, Ecologia e Scienze della Terra, Università degli Studi della Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
ROCCO DOMINICI
Affiliation:
Dipartimento di Biologia, Ecologia e Scienze della Terra, Università degli Studi della Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
FRANCESCO MUTO
Affiliation:
Dipartimento di Biologia, Ecologia e Scienze della Terra, Università degli Studi della Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
MAURIZIO PONTE
Affiliation:
Dipartimento di Biologia, Ecologia e Scienze della Terra, Università degli Studi della Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
*
Author for correspondence: francesco.perri@unical.it

Abstract

Deep-marine muds were collected from two boreholes (Crati II and Neto VI) along the Ionian Calabrian Basin. The samples from the Crati II and the Neto VI boreholes show a similar mineralogical distribution; the marine muds contain mostly phyllosilicates, quartz, calcite, feldspars and dolomite. Traces of gypsum are present in a few samples. The Neto muds show higher concentrations of carbonates than the Crati muds; these contents are mainly related to recycling of the Neogene–Quaternary carbonate-rich marine deposits of the Crotone Basin, which mostly influences the composition of the Neto muds. The geochemical signatures of the muds mainly reflect a provenance characterized by felsic rocks with a minor, but not negligible, mafic supply. In particular, the hinterland composition of the Crati drainage area is on average more mafic in composition than the Neto drainage area. The higher mafic concentration of the Crati sample muds is probably related to the ophiolitiferous units that are exposed in the Crati drainage basin. The degree of source area weathering was most probably of low–moderate intensity because the Chemical Index of Alteration values for the studied muds range from 67 to 69. Furthermore, the low and constant Al/K and Rb/K ratios suggest low–moderate weathering without important fluctuations in weathering intensity. The Al2O3–TiO2–Zr ternary diagram and the values of the Index of Compositional Variability indicate that both the Neto and Crati muds are first-cycle, compositionally immature sediments, related to a tectonically active (collision) setting such as the Calabria–Peloritani Arc, where chemical weathering plays a minor role.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitchison, J. 1986. Statistical Analysis of Compositional Data. London: Chapman & Hall, 416 pp.Google Scholar
Barone, M., Critelli, S., Dominici, R. & Muto, F. 2008. Detrital modes in a late Miocene wedge-top basin, northeastern Calabria, Italy: compositional record of wedge-top partitioning. Journal of Sedimentary Research 78, 693711.Google Scholar
Barshad, I. 1966. The effect of a variation in precipitation on the nature of clay mineral formation in soils from acid and basic igneous rocks. In Proceedings of the International Clay Conference (eds L. Heller & A. Weiss), pp. 167–73. Jerusalem: Israel Programme of Scientific Translation.Google Scholar
Bauluz, B., Mayayo, M. J., Fernandez-Nieto, C. & Gonzalez Lopez, J. M. 2000. Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): implications for source-area weathering, sorting, provenance, and tectonic setting. Chemical Geology 168, 135–50.Google Scholar
Bonardi, G., Cavazza, W., Perrone, V. & Rossi, S. 2001. Calabria-Peloritani Terrane and Northern Ionian Sea. In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins (eds Vai, G. B. & Martini, I. P.), pp. 287306. Dordrecht/Boston/London: Kluwer Academic Publishers.Google Scholar
Bracciali, L., Marroni, M., Pandolfi, L. & Rocchi, S. 2007. Geochemistry and petrography of Western Tethys Cretaceous sedimentary covers (Corsica and Northern Apennines): from source areas to configuration of margins. In Sedimentary Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry (eds Arribas, J., Critelli, S. & Johnsson, M. J.), pp. 7393. Geological Society of America Special Paper 420.Google Scholar
Cavalcante, F., Fiore, S., Lettino, A., Piccarreta, G. & Tateo, F. 2007. Illite-smectite mixed layers in sicilide shales and piggy-back deposits of the Gorgoglione Formation (Southern Apeninnes): geological inferences geodynamic implications. Bollettino della Società Geologica Italiana 126, 241–54.Google Scholar
Cavazza, W. & Ingersoll, R. V. 2005. Detrital modes of the Ionian forearc basin fill (Oligocene–Quaternary) reflect the tectonic evolution of the Calabria–Peloritani terrane (southern Italy). Journal of Sedimentary Research 75, 268379.Google Scholar
Ceramicola, S., Praeg, D., Coste, M., Forlin, E., Cova, A., Colizza, E. & Critelli, S. 2014. Submarine mass-movements along the slopes of the active Ionian continental margins and their consequences for marine geohazards (Mediterranean Sea). In Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research 37 (eds Krastel, S. et al.), pp. 295306. Dordrecht: Springer International Publishing.Google Scholar
Corbi, F., Fubelli, G., Lucà, F., Muto, F., Pelle, T., Robustelli, G., Scarciglia, F. & Dramis, F. 2009. Vertical movements in the Ionian margin of the Sila Massif (Calabria, Italy). Bollettino della Societa Geologica Italiana 128, 731–8.Google Scholar
Cox, R., Lowe, D. R. & Cullers, R. L. 1995. The influence of sediment recycling and basement composition on evolution of mud rock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta 59, 2919–40.CrossRefGoogle Scholar
Crichton, J. G. & Condie, K. C. 1993. Trace elements as source indicators in cratonic sediments: a case study from the Early Proterozoic Libby Creek Group, southeastern Wyoming. Journal of Geology 101, 319–32.Google Scholar
Critelli, S., Dominici, R., Muto, F., Perri, F. & Tripodi, V. 2012. Composition and depositional architecture of late Quaternary sediments in the deep-water northern Ionian Basin, southern Italy. Rendiconti Online della Società Geologica Italiana 21, 959–61.Google Scholar
Critelli, S. & Le Pera, E. 1995. Tectonic evolution of the Southern Apennines thrust-belt (Italy) as reflected in modal compositions of Cenozoic sandstone. Journal of Geology 103, 95105.Google Scholar
Critelli, S. & Le Pera, E. 1998. Post-Oligocene sediment dispersal systems and unroofing history of the Calabrian Microplate, Italy. International Geology Review 48, 609–37.Google Scholar
Critelli, S. & Le Pera, E. 2003. Provenance relations and modern sand petrofacies in an uplifted thrust-belt, northern Calabria, Italy. In Quantitative Provenance Studies in Italy (eds Valloni, R. & Basu, A.), pp. 2539. Servizio Geologico Nazionale, Memorie Descrittive della Carta Geologica d’Italia, vol. 61.Google Scholar
Critelli, S., Le Pera, E., Galluzzo, F., Milli, S., Moscatelli, M., Perrotta, S. & Santantonio, M. 2007. Interpreting siliciclastic-carbonate detrital modes in foreland basin systems: an example from Upper Miocene arenites of the Central Apennines, Italy. In Sedimentary Provenance: Petrographic and Geochemical Perspectives (eds Arribas, J., Critelli, S. & Johnsson, M.), pp. 107–33. Geological Society of America Special Paper 420.Google Scholar
Critelli, S., Mongelli, G., Perri, F., Martin-Algarra, A., Martin-Martin, M., Perrone, V., Dominici, R., Sonnino, M. & Zaghloul, M. N. 2008. Compositional and geochemical signatures for the sedimentary evolution of the Middle Triassic–Lower Jurassic continental redbeds from western-central Mediterranean Alpine chains. Journal of Geology 116, 375–86.Google Scholar
Critelli, S., Muto, F., Tripodi, V. & Perri, F. 2013. Link between thrust tectonics and sedimentation processes of stratigraphic sequences from the southern Apennines foreland basin system, Italy. Rendiconti Online della Società Geologica Italiana 25, 2142.Google Scholar
Fedo, C. M., Nesbitt, H. W. & Young, G. M. 1995. Unraveling the effect of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23, 921–4.Google Scholar
Garcia, D., Coehlo, J. & Perrin, M. 1991. Fractionation between TiO2 and Zr as a measure of sorting within shale and sandstone series (northern Portugal). European Journal of Mineralogy 3, 401–14.Google Scholar
Herron, M. M. 1988. Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology 58, 820–9.Google Scholar
Karbassi, A. R. & Amirnezhad, R. 2004. Geochemistry of heavy metals and sedimentation rate in a bay adjacent to the Caspian Sea. International Journal of Environmental Science and Technology 1, 199206.Google Scholar
Knott, S. D. & Turco, E. 1991. Late Cenozoic kinematics of the Calabrian Arc, southern Italy. Tectonics 10, 1164–72.Google Scholar
Krumm, S. 1996. WINFIT 1.2: version of November 1996 (The Erlangen geological and mineralogical software collection) of “WINFIT 1.0: a public domain program for interactive profile-analysis under WINDOWS”. XIII Conference on Clay Mineralogy and Petrology, Praha, 1994. Acta Univers itatis Carolinae Geologica 38, 253–61.Google Scholar
Le Pera, E., Arribas, J., Critelli, S. & Tortosa, A. 2001. The effects of source rocks and chemical weathering on the petrogenesis of siliciclastic sand from the Neto River (Calabria, Italy): implications for provenance studies. Sedimentology 48, 357–77.CrossRefGoogle Scholar
Lugli, S., Dominici, R., Barone, M., Costa, E. & Cavozzi, C. 2007. Messinian halite and residual facies in the Crotone basin (Calabria, Italy). In Evaporites Through Space and Time (eds Schreiber, B. C., Lugli, S. & Baçbel, M.), pp. 169–78. Geological Society of London, Special Publication no. 285.Google Scholar
McLennan, S. M., Taylor, S. R. & Hemming, S. R. 2006. Composition, differentiation, and evolution of continental crust: constrains from sedimentary rocks and heat flow. In Evolution and Differentiation of the Continental Crust (eds Brown, M. & Rushmer, T.), pp. 92134. Cambridge: Cambridge University Press.Google Scholar
Mongelli, G., Critelli, S., Perri, F., Sonnino, M. & Perrone, V. 2006. Sedimentary recycling, provenance and paleoweathering from chemistry and mineralogy of Mesozoic continental redbed mudrocks, Peloritani Mountains, Southern Italy. Geochemical Journal 40, 197209.Google Scholar
Nesbitt, H. W. & Young, G. M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–7.Google Scholar
Ohta, T. & Arai, H. 2007. Statistical empirical index of chemical weathering in igneous rocks: a new tool for evaluating the degree of weathering. Chemical Geology 240, 280–97.Google Scholar
Perri, F. 2008. Clay mineral assemblage of the Middle Triassic-Lower Jurassic mudrocks from western-central Mediterranean Alpine chains. Periodico di Mineralogia 77, 2340.Google Scholar
Perri, F., Borrelli, L., Critelli, S. & Gullà, G. 2014. Chemical and minero-petrographic features of Plio-Pleistocene fine-grained sediments in Calabria (southern Italy). Italian Journal of Geosciences 133, 101–15.CrossRefGoogle Scholar
Perri, F., Cirrincione, R., Critelli, S., Mazzoleni, P. & Pappalardo, A. 2008. Clay mineral assemblages and sandstone compositions of the Mesozoic Longobucco Group (north-eastern Calabria): implication for burial history and diagenetic evolution. International Geology Review 50, 1116–31.Google Scholar
Perri, F., Critelli, S., Cavalcante, F., Mongelli, G., Dominici, R., Sonnino, M. & De Rosa, R. 2012 a. Provenance signatures for the Miocene volcaniclastic succession of the Tufiti di Tusa Formation, southern Apennines, Italy. Geological Magazine 149, 423–42.Google Scholar
Perri, F., Critelli, S., Dominici, R., Muto, F., Tripodi, V. & Ceramicola, S. 2012 b. Provenance and accommodation pathways of late Quaternary sediments in the deep-water northern Ionian Basin, southern Italy. Sedimentary Geology 280, 244–59.Google Scholar
Perri, F., Critelli, S., Martìn-Algarra, A., Martìn-Martìn, M., Perrone, V., Mongelli, G. & Zattin, M. 2013. Triassic redbeds in the Malaguide Complex (Betic Cordillera – Spain): petrography, geochemistry, and geodynamic implications. Earth-Science Reviews 117, 128.Google Scholar
Perri, F., Critelli, S., Mongelli, G. & Cullers, R. L. 2011. Sedimentary evolution of the Mesozoic continental redbeds using geochemical and mineralogical tools: the case of Upper Triassic to Lowermost Jurassic M.te di Gioiosa mudstones (Sicily, Southern Italy). International Journal of Earth Sciences 100, 1569–87.Google Scholar
Perri, F., Dominici, R. & Critelli, S. 2014. Stratigraphy, composition and provenance of argillaceous marls from the Calcare di Base Formation, Rossano Basin (northeastern Calabria). Geological Magazine. Published online 15 April 2014. doi: 0.1017/S0016756814000089 Google Scholar
Perri, F., Greco, A., Aldega, L., Corrado, S., Critelli, S. & Di Paolo, L. 2012 c. Composition, provenance and thermal history of sedimentary successions from the Cilento Group (southern Apennines). Rendiconti Online della Società Geologica Italiana 21, 203–5.Google Scholar
Perri, F., Muto, F. & Belviso, C. 2011. Links between composition and provenance of Mesozoic siliciclastic sediments from Western Calabria (Southern Italy). Italian Journal of Geosciences 130, 318–29.Google Scholar
Perri, F. & Otha, T. 2014. Paleoclimatic conditions and paleoweathering processes on Mesozoic continental redbeds from western-central Mediterranean Alpine chains. Palaeogeography, Palaeoclimatology, Palaeoecology 395, 144–57.CrossRefGoogle Scholar
Plank, T. & Langmuir, C. H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology 145, 325–94.Google Scholar
Poulton, S. W. & Raiswell, R. 2002. The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition. American Journal of Science 302, 774805.Google Scholar
Potter, P. E. 1978, Petrology and chemistry of modern big river sands. Journal of Geology 86, 423–49.Google Scholar
Rebesco, M., Neagu, R. C., Cuppari, A., Muto, F., Accettella, D., Dominici, R., Cova, A., Romano, C. & Caburlotto, A. 2009. Morphobathymetric analysis and evidence of submarine mass movements in the western Gulf of Taranto (Calabria margin, Ionian Sea). International Journal of Earth Sciences 4, 791–805.CrossRefGoogle Scholar
Robustelli, G., Lucà, F., Corbi, F., Pelle, T., Dramis, F., Fubelli, G., Scarciglia, F., Muto, F. & Cugliari, D. 2009. Alluvial terraces on the Ionian coast of northern Calabria, southern Italy: implications for tectonic and sea level controls. Geomorphology 106, 165–79.CrossRefGoogle Scholar
Romagnoli, C. & Gabbianelli, G. 1990. Late Quaternary sedimentation and soft-sediment deformations in the Corigliano Basin (Gulf of Taranto, northern Ionian Sea). Giornale di Geologia 52, 3353.Google Scholar
Roser, B. & Korsch, R. 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology 67, 119–39.Google Scholar
Rossi, S. & Sartori, R. 1981. A seismic reflection study of the External Calabrian Arc in the Northern Ionian Sea (Eastern Mediterranean). Marine Geophisical Researches 4, 403–26.CrossRefGoogle Scholar
Roy, P. D., Caballero, M., Lozano, R. & Smytatz-Kloss, W. 2008. Geochemistry of late Quaternary sediments from Tecomuco lake, central Mexico: implication to chemical weathering and provenance. Chemie der Erde 68, 383–93.Google Scholar
Scarciglia, F., Le Pera, E. & Critelli, S. 2007. The onset of sedimentary cycle in a mid-latitude upland environment: weathering, pedogenesis and geomorphic processes on plutonic rocks (Sila Massif, Calabria). In Sedimentary Provenance: Petrographic and Geochemical Perspectives (eds Arribas, J., Critelli, S. & Johnsson, M.), pp. 149–66. Geological Society of America Special Paper 420.Google Scholar
Schieber, J. 1992. A combined petrographical–geochemical provenance study of the Newland Formation, Mid-Proterozoic of Montana. Geological Magazine 129, 223–37.Google Scholar
Schneider, R. R., Price, B., Müller, P. J., Kroon, D. & Alexander, I. 1997. Monsoon-related variations in Zaire (Congo) sediment load and influence of fluvial silicate supply on marine productivity in the east equatorial Atlantic during the last 200,000 years. Paleoceanography, 12, 463–81.Google Scholar
Speranza, F., Minelli, L., Pignatelli, A. & Chiappini, M. 2012. The Ionian Sea: the oldest in situ ocean fragment of the world? Journal of Geophysical Research 117, B12101.Google Scholar
Tripodi, V., Muto, F. & Critelli, S. 2013. Structural style and tectonostratigraphic evolution of the Neogene-Quaternary Siderno Basin, southern Calabrian Arc, Italy. International Geology Review 55, 468–81.Google Scholar
Van De Kamp, P. C. & Leake, B. E. 1985. Petrography and geochemistry of feldspathic and mafic sediments of the Northeastern Pacific Margin. Transactions of the Royal Society of Edinburgh: Earth Sciences 76, 411–49.Google Scholar
Van Dijk, J. P., Bello, M., Brancaleoni, G. P., Cantarella, G., Costa, V., Frixa, A., Golfetto, F., Merlini, S., Riva, M., Torricelli, S., Toscano, C. & Zerilli, A., 2000. A regional structural model for the northern sector of the Calabria Arc (Southern Italy). Tectonophysics 324, 267320.Google Scholar
Verma, S. P., Pandarinath, K., Verma, S. K. & Agrawal, S. 2013. Fifteen new discriminant-function-based multi-dimensional robust diagrams for acid rocks and their application to Precambrian rocks. Lithos 168–169, 113–23.Google Scholar
Von Eynatten, H. 2004. Statistical modelling of compositional trends in sediments. Sedimentary Geology 171, 7989.Google Scholar
Weaver, C. E. 1989. Clays, Muds, and Shales. Developments in Sedimentology, 44. Amsterdam: Elsevier, 819 pp.Google Scholar
Weltje, G. T. 2002. Quantitative analysis of detrital modes: statistically rigorous confidence regions in ternary diagrams and their use in sedimentary petrology. Earth-Science Reviews 57, 211–53.Google Scholar
Wronkiewicz, D. J. & Condie, K. C. 1987. Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance. Geochimica et Cosmochimica Acta 51, 2401–16.Google Scholar
Zaghloul, M. N., Critelli, S., Perri, F., Mongelli, G., Perrone, V., Sonnino, M., Tucker, M., Aiello, M. & Ventimiglia, C. 2010. Depositional systems, composition and geochemistry of Triassic rifted continental margin redbeds of Internal Rif Chain, Morocco. Sedimentology 57, 312–50.CrossRefGoogle Scholar
Zecchin, M., Ceramicola, S., Gordini, E., Deponte, M. & Critelli, S. 2011. Cliff overstep model and variability in the geometry of transgressive erosional surfaces in high-gradient shelves: the case of the Ionian Calabrian margin (southern Italy). Marine Geology 281, 4358.Google Scholar
Zecchin, M., Civile, D., Caffau, M., Muto, F., Di Stefano, A. & Maniscalco, R., Critelli, S. 2013. The Messinian succession of the Crotone Basin (southern Italy) I: stratigraphic architecture reconstructed by seismic and well data. Marine and Petroleum Geology 48, 455–73.Google Scholar