Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T21:22:31.876Z Has data issue: false hasContentIssue false

Strontium isotopes and mobility of a Columbian mammoth (Mammuthus columbi) population, Laguna de las Cruces, San Luis Potosí, México

Published online by Cambridge University Press:  01 February 2016

VÍCTOR ADRIÁN PÉREZ-CRESPO*
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica S/N, Ciudad Universitaria, Del. Coyoacán, 04510 México, D. F., México
PETER SCHAAF
Affiliation:
LUGIS, Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, D. F., México
GABRIELA SOLÍS-PICHARDO
Affiliation:
LUGIS, Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, D. F., México
JOAQUÍN ARROYO-CABRALES
Affiliation:
Laboratorio de Arqueozoología ‘M. en C. Ticul Álvarez Solórzano’, Subdirección de Laboratorios y Apoyo Académico, INAH. Moneda 16 Col. Centro, 06060 México, D. F., México
LUIS M. ALVA-VALDIVIA
Affiliation:
Laboratorio de Paleomagnetismo, Instituto de Geofísica, UNAM, Ciudad Universitaria, Del. Coyoacán, 04150 México, D. F., México
JOSÉ RAMÓN TORRES-HERNÁNDEZ
Affiliation:
Instituto de Geología, Universidad Autónoma de San Luis Potosí, Dr. Manuel Nava 5, Zona Universitaria, 78240 San Luis Potosí, S. L. P., México
*
Author for correspondence: vapc79@gmail.com

Abstract

By using strontium isotopic ratios of dental enamel from molars, we were able to reconstruct the migration context for three individuals of a Columbian mammoth population (Mammuthus columbi) around Laguna de las Cruces, San Luis Potosí, central México. A three-step leaching procedure was applied to eliminate secondary Sr contributions in the molar enamel. One of the studied individuals showed 87Sr/86Sr ratios similar to those obtained from soils and plants from Laguna de las Cruces and was identified as local, whereas the other two mammoths had different molar 87Sr/86Sr values, indicative of migration and mobility contexts.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ábelová, M. 2006. Migration pattern inferred from Ursus spaleus Rosenmuller tooth from Tmavá Skala Cave (Slovak Republic) using strontium isotopes analyses. Scientific Annals 98, 123–6.Google Scholar
Alvarez, T. A. 1982. Restos óseos de animales localizados en las excavaciones .de mamíferos. In Laguna de las Cruces, Salinas, S.L.P. Un Sitio Paleontológico del Pleistoceno Final (ed. Mirambell, L.), pp. 6275. Colección Científica 128, México.Google Scholar
Arppe, L. 2009. Isotopic records of terrestrial ice age environments in mammoth bioapatite. Ph.D. thesis, Helsinki University, Helsinki, Finland. Published thesis.Google Scholar
Arroyo-Cabrales, J., Polaco, O. J., Laurito, C., Johnson, E., Alberdi, M. T. & Valerio-Zamora, A. L. 2007. The proboscideans (Mammalia) from Mesoamerica. Quaternary International 169–170, 1723.Google Scholar
Beard, B. L. & Johnson, C. M. 2000. Strontium isotope composition of skeletal material can determine the birth place and geography mobility of humans and animals. Journal of Forensic Science 45, 1049–61.Google Scholar
Bell, C. J., Lundelius, E. L. Jr., Barnosky, A. D., Graham, R. W., Lindsay, E. H., Ruez, D. R. Jr., Semken, H. A. Jr., Webb, S. D. & Zakrzewski, R. J. 2004. The Blancan, Irvingtonian, and Rancholabrean mammal ages. In Late Cretaceous and Cenozoic Mammals of North America (ed. Woodburne, M. O.), pp. 232314. New York, USA: Columbia University Press.CrossRefGoogle Scholar
Bentley, R. A. 2006. Strontium isotopes from the Earth to the archaeological skeleton: a review. Journal of Archaeological Method and Theory 13, 135–87.CrossRefGoogle Scholar
Capo, R. C., Brian, S. W. & Chadwick, O. A. 1998. Strontium isotopes as tracer of ecosystem processes: theory and methods. Geoderma 82, 197225.Google Scholar
Castiglia, P. J. & Fawcett, P. J. 2006. Large Holocene lakes and climate changes in the Chihuahuan desert. Geology 34, 113–6.CrossRefGoogle Scholar
Castillo, R., Morales, P. & Ramos, S. 1985. El oxígeno-18 en las aguas meteóricas de México. Revista Mexicana de Física 31, 637–47.Google Scholar
Ceballos, G., Arroyo-Cabrales, J. & Ponce, E. 2010. Effects of Pleistocene environmental changes on the distribution and community structure of mammalian fauna of México. Quaternary Research 73, 464–73.Google Scholar
Churcher, C. S. 1980. Did North American mammoths migrate? Canadian Journal of Anthropology 1, 103–5.Google Scholar
Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus 16, 436–68.Google Scholar
Dirks, W., Bromage, T. G. & Agenbroad, L. D. 2012. The duration and rate of molar plate formation in Palaeoloxodon cypriotes and Mammuthus columbi from dental histology. Quaternary International 255, 7985.Google Scholar
Elias, R. W., Hirao, Y. & Patterson, C. C. 1982. The circumvention of the natural biopurification of calcium along nutrient pathways by atmospheric inputs of industrial lead. Geochemica et Comoschimica Acta 46, 2561–80.CrossRefGoogle Scholar
Faure, G. 1977. Principles of Isotope Geology. New York, USA: John Wiley & Sons, 589 pp.Google Scholar
Fenner, J. N. 2008. The use of stable isotope ratio analysis to distinguish multiple prey kill events from mass kill events. Journal of Archaeological Science 35, 704–16.Google Scholar
Fenner, J. N. & Frost, C. D. 2009. Modern Wyoming plant and pronghorn isoscapes and their implications for archaeology. Journal of Geochemical Exploration 102, 149–56.CrossRefGoogle Scholar
Feranec, R. S., Hadly, E. A. & Paytan, A. 2007. Determining landscape use of Holocene mammals using strontium isotopes. Oecologia 143, 943–50.Google Scholar
Feranec, R. S., Hadly, E. A. & Paytan, A. 2009. Isotopes reveal limited effects of middle Pleistocene change on the ecology of mid-sized mammals. Quaternary International 217, 4352.Google Scholar
Ferretti, M. P. 2003. Structure and evolution of mammoth molar enamel. Acta Paleontologica Polonica 48, 383–96.Google Scholar
Flores, D. A. 1982. Análisis físicos y químicos de la Laguna de las Cruces. In Laguna de las Cruces, Salinas, S.L.P. Un Sitio Paleontológico del Pleistoceno Final (ed. Mirambell, L.), pp. 3558. Colección Científica 128, México.Google Scholar
García-Zepeda, M. A., Arroyo-Cabrales, J., Hernández Madrigal, V. M., Garduño-Monroy, V. H., Polaco, O. J. & Johnson, E. 2007. Migratory routes in southern North America (México) for Mammuthus columbi (Proboscidea, Elephantidae). Abstracts of the 4th International Mammoth Conference, Yakutsk, Russia.Google Scholar
Haynes, G. 1991. Mammoths, Mastodonts and Elephants. Biology, Behavior, and the Fossil Record. USA: Cambridge University Press, 431 pp.Google Scholar
Haynes, G. 1992. The Waco mammoths: possible clues to herd size, demography, and reproductive health. In Proboscidean and Paleoindian Interactions (eds Fox, J. W., Smith, C. B. & Wilkins, K. T..), pp. 111–22. USA: Baylor University Press.Google Scholar
Hoppe, K. A. 2004. Late Pleistocene mammoth herd structure, migration patterns, and Clovis hunting strategies inferred from isotopic analyses of multiple death assemblages. Paleobiology 30, 129–45.Google Scholar
Hoppe, K. A. & Koch, P. L. 2006. The biogeochemistry of the Aucilla River fauna. In First Floridians and Last Mastodons: The Page-Ladson Site in the Aucilla River (ed. Webb, S. D.), pp. 379401. Dordrecht, The Netherlands: Springer.Google Scholar
Hoppe, K. A. & Koch, P. L. 2007. Reconstructing the migration patterns of late Pleistocene mammals from northern Florida, USA. Quaternary Research 68, 347–52.Google Scholar
Hoppe, K. A., Koch, P. L., Carlson, R. W. & Webb, S. D. 1999. Tracking mammoths and mastodons: reconstruction of migratory behavior using strontium isotope ratios. Geology 27, 439–42.2.3.CO;2>CrossRefGoogle Scholar
Johnson, E., Arroyo-Cabrales, J. & Morett, L. 2012. Mammoth bone technology at Tocuila in the basin of México. In Bones and Tools – Tools for Bones. The Interplay between Objects and Objectives (eds Seetah, K. & Gravina, B.), pp. 97113. Cambridge, UK: McDonald Institute Monographs.Google Scholar
Johnson, E., Arroyo-Cabrales, J. & Polaco, O. J. 2006. Climate, environment, and game animal resources of the Late Pleistocene Mexican grassland. In El Hombre Temprano en América y sus Implicaciones en el Poblamiento de la Cuenca de México (Jiménez, coords L.C. J., González, S., Pompa y Padilla, J. A. & Ortíz, P. F.), pp. 231–45. Colección Científica-500, INAH, México.Google Scholar
Koch, P. L. 2007. Isotopic study of the biology of modern and fossil vertebrates. In Stable Isotopes in Ecology and Environmental Science (eds Michener, R. & Lajtha, K.), pp. 6392. Oxford: Blackwell Scientific.Google Scholar
Koch, P. L., Heisinger, J., Moss, C., Carlson, R. W., Fogel, M. L. & Behrensmeyer, A. K. 1995. Isotopic tracking of change in diet and habitat use in African elephants. Science 267, 1340–3.Google Scholar
Maglio, V. J. 1972. Evolution of mastication in the Elephantidae. Evolution 26, 638–58.Google Scholar
Mahood, G. A. 1980. Physical evolution of a Pleistocene rhyolitic center: Sierra La Primavera, Jalisco, México. Journal of Volcanology and Geothermal Research 8, 199230.Google Scholar
Metcalfe, S. E. 2006. Late Quaternary environments of the northern deserts and central transvolcanic belt of México. Annals of the Missouri Botanical Garden 93, 258–73.CrossRefGoogle Scholar
Mirambell, L. 1982. Las excavaciones. In Laguna de las Cruces, Salinas, S.L.P. Un Sitio Paleontológico del Pleistoceno Final (ed. Mirambell, L.), pp. 1218. Colección Científica 128, México.Google Scholar
Morret, A. L., Arroyo-Cabrales, J. & Polaco, O. J. 1998. Tocuila, a remarkable mammoth site in the Basin of México. Current Research in the Pleistocene 15, 118–20.Google Scholar
Ortega-Ramírez, J. R., Valiente-Banuet, A., Urrutia-Fucugauchi, J., Mortera-Gutiérrez, A. & Alvarado-Valdez, G. 1998. Paleoclimatic changes during the Late Pleistocene–Holocene in Laguna Babícora, near the Chihuahua desert, México. Canadian Journal of Earth Sciences 35, 1168–79.Google Scholar
Pérez-Crespo, V. A., Arroyo-Cabrales, J., Alva-Valdivia, L. M., Morales-Puente, P. & Cienfuegos-Alvarado, E. 2012 a. Datos isotópicos (δ13C, δ18O) de la fauna pleistocénica de la Laguna de las Cruces, San Luis Potosí, México. Revista Mexicana de Ciencias Geológicas 29, 299307.Google Scholar
Pérez-Crespo, V. A., Arroyo-Cabrales, J., Benammi, M., Johnson, E., Polaco, O. J., Santos-Moreno, A., Morales-Puente, P. & Cienfuegos-Alvarado, E. 2012 b. Geographic variation of diet and habitat of the Mexican populations of Columbian Mammoth (Mammuthus columbi). Quaternary International 276–277, 816.Google Scholar
Pérez-Crespo, V. A., Arroyo-Cabrales, J., Benammi, M., Polaco, O. J., Santos-Moreno, A., Morales-Puente, P., Cienfuegos-Alvarado, E. & Otero, F. J. 2013. Variación de la dieta del mamut de las praderas de Laguna de las Cruces, San Luis Potosí, México. Boletín de la Sociedad Geológica Mexicana 65, 573–80.Google Scholar
Price, T. D., Burton, J. H. & Bentley, R. A. 2002. The characterization of biologically available strontium isotope ratios for the study of prehistoric migration. Archaeometry 44, 117–35.Google Scholar
Radloff, F. G. T., Mucina, L., Bond, W. J. & Le Roux, P. J. 2010. Strontium isotope analyses of large herbivore habitat use in the Cape Fynbos region of South Africa. Oecologia 164, 567–78.Google Scholar
Reyes, C. M. 1982. Consideraciones sobre la geología del Cuaternario del área. In Laguna de las Cruces, Salinas, S.L.P. Un Sitio Paleontológico del Pleistoceno Final (ed. Mirambell, L.), pp. 6275. Colección Científica 128, México.Google Scholar
Rubenstein, D. R. & Hobson, K. A. 2004. From birds to butterflies: animal movement patterns and stable isotopes. Trends in Ecology and Evolution 19, 256–63.Google Scholar
Schaaf, P., Solís, G., Manzanilla, R. L., Hernández, T., Lailson, B. & Horn, P. 2012. Isótopos de estroncio aplicados a estudios de migración humana en el centro de barrio de Teopancazco, Teotihuacan. In Estudios Arqueométricos del Centro de Barrio de Teopancazco en Teotihuacan (ed. Manzanilla, L. R.), pp. 425–88. Instituto de Investigaciones Antropológicas, UNAM.Google Scholar
Schaaf, P., Stimac, J., Siebe, C. & Macías, J. L. 2005. Geochemical evidence for mantle origin and crystal processes in volcanic rocks from Popocatépetl and surrounding monogenetic volcanoes, central Mexico. Journal of Petrology 46, 1243–82.Google Scholar
Schoeninger, M. 1979. Diet and status at Chalcatzingo: some empirical and technical aspects of strontium analysis. American Journal of Physical Anthropology 51, 295310.CrossRefGoogle ScholarPubMed
Sealy, J. 2001. Body tissue chemistry and palaeodiet. In Handbook of Archaeological Sciences (eds Brothwell, D. R. & Pollard, A. M.), pp. 269–76. Chichester: John Wiley & Sons.Google Scholar
Servín, G. M. 2010. Estudio de proboscidios (Mammuthus Burnett, 1830) de la Piedad Cabada, Michoacán y sus rutas migratorias hacia el sur del continente americano en el Pleistoceno. Bachelor thesis, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México. Published thesis.Google Scholar
Siebe, C., Schaaf, P. & Urrutia-Fucugauchi, J. 1999. Mammoth bones embedded in a Late Pleistocene lahar from Popocatépetl volcano, near Tocuila, central México. Geological Society of America Bulletin 111, 1550–62.Google Scholar
Slovak, N. M. & Paytan, A. 2011. Applications of Sr in archaeology. In Handbook of Environmental Isotope Geochemistry, Advances in Isotope Geochemistry (ed. Baskaran, M.), pp. 743–68. Berlin: Springer.Google Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planetary Science Letters 36, 359–62.Google Scholar
Sukumar, R., Bhattcharya, S. K. & Krisnhnamurthy, R. V. 1987. Carbon isotopic evidence for different feeding patterns in an Asian elephant population. Current Science 56, 11–4.Google Scholar
Sukumar, R. & Ramesh, R. 1992. Stable carbon isotope ratios in Asian elephant collagen: implications for dietary studies. Oecologia 192, 536–9.Google Scholar