Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T13:04:56.913Z Has data issue: false hasContentIssue false

Structural and host rock controls on the distribution, morphology and mineralogy of speleothems in the Castañar Cave (Spain)

Published online by Cambridge University Press:  28 June 2010

ANA M. ALONSO-ZARZA*
Affiliation:
Dpto. Petrología y Geoquímica, Facultad de Ciencias, Geológicas-Instituto de Geología Económica, Universidad Complutense de Madrid-CSIC, 28040, Spain
ANDREA MARTÍN-PÉREZ
Affiliation:
Dpto. Petrología y Geoquímica, Facultad de Ciencias, Geológicas-Instituto de Geología Económica, Universidad Complutense de Madrid-CSIC, 28040, Spain
REBECA MARTÍN-GARCÍA
Affiliation:
Dpto. Petrología y Geoquímica, Facultad de Ciencias, Geológicas-Instituto de Geología Económica, Universidad Complutense de Madrid-CSIC, 28040, Spain
INMA GIL-PEÑA
Affiliation:
Instituto Geológico y Minero de España (IGME), Ríos Rosas 23, 28003 Madrid, Spain
ALFONSO MELÉNDEZ
Affiliation:
Dpto. Ciencias de la Tierra, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
ESPERANZA MARTÍNEZ-FLORES
Affiliation:
Consejería de Industria, Energía y Medio Ambiente, Junta de Extremadura, Paseo de Roma, s/n 06800, Mérida, Spain
JOHN HELLSTROM
Affiliation:
School of Earth Sciences, The University of Melbourne, Victoria 3010, Australia
PEDRO MUÑOZ-BARCO
Affiliation:
Consejería de Industria, Energía y Medio Ambiente, Junta de Extremadura, Paseo de Roma, s/n 06800, Mérida, Spain
*
Author for correspondence: alonsoza@geo.ucm.es

Abstract

The Castañar Cave (central western Spain) formed in mixed carbonate–siliciclastic rocks of Neoproterozoic age. The host rock is finely bedded and shows a complex network of folds and fractures, with a prevalent N150E strike. This structure controlled the development and the maze pattern of the cave, as well as its main water routes. The cave formed more than 350 ka ago as the result of both the dissolution of interbedded carbonates and weathering of siliciclastic beds, which also promoted collapse of the overlying host rock. At present it is a totally vadose hypergenic cave, but its initial development could have been phreatic. The cave's speleothems vary widely in their morphology and mineralogy. In general, massive speleothems (stalactites, stalagmites, flowstones, etc.) are associated with the main fractures of the cave and bedding planes. These discontinuities offer a fairly continuous water supply. Other branching, fibrous, mostly aragonite speleothems, commonly occur in the steeper cave walls and were produced by capillary seepage or drip water. Detailed petrographical and isotope analyses indicate that both aragonite and calcite precipitated as primary minerals in the cave waters. Primary calcite precipitated in waters of low magnesium content, whereas aragonite precipitated from magnesium-rich waters. Differences in isotope values for calcite (−5.2 ‰ for δ18O and −9.6 ‰ for δ13C) and aragonite (δ18O of −4.5 ‰ and δ13C of −3.5 ‰) can be explained by the fact that the more unstable mineral (aragonite) tends to incorporate the heavier C isotope to stabilize its structure or that aragonite precipitates in heavier waters. Changes in the water supply and the chemistry and instability of aragonite caused: (1) inversion of aragonite to calcite, which led to the transformation of aragonite needles into coarse calcite mosaics, (2) micritization, which appears as films or crusts of powdery, opaque calcite, and (3) dissolution. Dolomite, huntite, magnesite and sepiolite were identified within moonmilk deposits and crusts. Moonmilk occurs as a soft, white powder deposit on different types of speleothems, but mostly on aragonite formations. Huntite and magnesite formed as primary minerals, whereas dolomite arose via the replacement of both huntite and aragonite. Owing to its variety of speleothems and location in an area of scarce karstic features, the Castañar Cave was declared a Natural Monument in 1997 and is presently the target of a protection and research programme. Although the main products formed in the cave and their processes are relatively well known, further radiometric data are needed to better constrain the timing of these processes. For example, it is difficult to understand why some aragonite speleothems around 350 ka old have not yet given way to calcite, which indicates that the environmental setting of the cave is still not fully understood.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso-Zarza, A. M. & Martín-Pérez, A. 2008. Dolomite in caves: recent dolomite formation in oxic, non-sulfate environments. Castañar Cave, Spain. Sedimentary Geology 205, 160–4.CrossRefGoogle Scholar
Álvarez Nava, H., García Casquero, J. L., Gil, A., Hernández Urroz, J., Lorenzo, S., López Díaz, F., Mira, M., Monteserín, V., Nozal, F., Pardo, M. V., Picart, J., Robles, R., Santamaría, J. & Solé, F. J. 1988. Unidades litoestratigráficas de los materiales precámbrico–cámbricos en la mitad suroriental de la Zona Centro-Ibérica. II Congreso Geológico de España 1, 1922.Google Scholar
Auler, A. S. & Smart, P. L. 2004. Rates of condensation corrosion in speleothems of semi-arid northeastern Brazil. Speleogenesis and Evolution of Karst Aquifers 2.Google Scholar
Bar-Matthews, M., Matthews, A. & Ayalon, A. 1991. Environmental controls of speleothem mineralogy in a karstic dolomitic terrain, Soreq Cave, Israel. Journal of Geology 99, 189207.CrossRefGoogle Scholar
Bathurst, R. G. C. 1976. Carbonate Sediments and their Diagenesis. Amsterdam: Elsevier, 658 pp.Google Scholar
Blyth, A. J. & Frisia, S., 2008. Molecular evidence for bacterial mediation of calcite formation in cold high-altitude caves. Geomicrobiology Journal 25, 101–11.CrossRefGoogle Scholar
Bosák, P., Bella, P., Cilek, V., Ford, D. C., Hercman, H., Kadlec, J., Osborne, A. & Pruner, P. 2002. Ochtiná aragonite cave (Slovakia): morphology, mineralogy and genesis. Geologica Carpathica 53, 399410.Google Scholar
Cabrol, P. & Coudray, J. 1982. Climatic fluctuations influence the genesis and diagenesis of carbonate speleothems in Southwestern France. National Speleological Society Bulletin 44, 112–7.Google Scholar
Cabrol, P. & Mangin, A. 2000. Fleurs de Pierre. Lausanne: Delachaux et Niestlé, 191 pp.Google Scholar
Cañaveras, J., Cuezva, S., Sánchez-Moral, S., Lario, J., Laiz, L., González, J. & Saiz-Jiménez, C. 2006. On the origin of fiber calcite crystals in moonmilk deposits. Naturwissenschaften 93, 2732.Google Scholar
De Choudens-Sánchez, V. & González, L. A. 2009. Calcite and aragonite precipitation under controlled instantaneous supersaturation: elucidating the role of CaCO3 saturation state and Mg/Ca ratio on calcium carbonate polymorphism. Journal of Sedimentary Research 79, 363–76.Google Scholar
Díez-Balda, M. A., Vegas, R. & González-Lodeiro, F. 1990. Central-Iberian Zone. Autochthonous sequences: structure. In Pre-Mesozoic Geology of Iberia (eds Dallmeyer, R. D. & Martínez-García, E.), pp. 172–88. Berlin: Springer-Verlag.Google Scholar
Esteban, M. & Klappa, C. F. 1983. Subaerial exposure environments. In Carbonate Depositional Environments (eds Scholle, P. A., Bebout, D. G. & Moore, C. H.), pp. 196. Tulsa, Oklahoma: American Association of Petroleum Geologists Memoir.Google Scholar
Fairchild, I. J., Smith, C. L., Baker, A., Fuller, L., Spotl, C., Mattey, D., Mcdermott, F. & E.I.M.F. (Edinburgh Ion Microprobe Facility). 2006. Modification and preservation of environmental signals in speleothems. Earth-Science Reviews 75, 105–53.CrossRefGoogle Scholar
Folk, R. L. 1974. The natural history of crystalline calcium carbonate: effect of magnesium content and salinity. Journal of Sedimentary Petrology 44, 4053.Google Scholar
Ford, D. C. & Williams, P. W. 2007. Karst Hydrogeology and Geomorphology. Chichester, England: Wiley, 562 pp.Google Scholar
Frisia, S. & Borsato, A. 2010. Karst. In Carbonates in Continental Settings: Facies, environments and processes (eds Alonso, A. M. Zarza & Tanner, L. H.), pp. 269318. Amsterdam: Elsevier.CrossRefGoogle Scholar
Frisia, S., Borsato, A., Fairchild, I. J., McDermott, F. & Selmo, E. M. 2002. Aragonite–calcite relationships in speleothems (Grotte de Clamouse, France): environment, fabrics and carbonate geochemistry. Journal of Sedimentary Research 72, 687–99.Google Scholar
Given, R. K. & Wilkinson, B. H. 1985. Kinetic control of morphology, composition, and mineralogy of abiotic sedimentary carbonates. Journal of Sedimentary Research 55, 109–19.Google Scholar
Hellstrom, J. C. 2003. Rapid and accurate U/Th dating using parallel ion-counting multicollector ICP-MS. Journal of Analytical Atomic Spectrometry 18, 1346–51.Google Scholar
Hellstrom, J. 2006. U–Th dating of speleothems with high initial 230Th using stratigraphical constraint. Quaternary Geochronology 1, 289–95.CrossRefGoogle Scholar
Hendy, C. H. 1971. The isotopic geochemistry of speleothems – I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochimica et Cosmochimica Acta 35, 801–24.CrossRefGoogle Scholar
Hill, C. A. & Forti, P. 1997. Cave Minerals of the World. Huntsville, AL: National Speleological Society, 463 pp.Google Scholar
Klimchouk, A. 2009. Morphogenesis of hypogenic caves. Geomorphology 106, 100–17.CrossRefGoogle Scholar
Lippmann, F. 1973. Sedimentary Carbonate Minerals. New York: Springer-Verlag, 228 pp.Google Scholar
Martín-García, R., Alonso-Zarza, A. M. & Martín-Pérez, A. 2009. Loss of primary texture and geochemical signatures in speleothems due to diagenesis: evidences from Castañar Cave, Spain. Sedimentary Geology 221, 141–9.CrossRefGoogle Scholar
Martín-García, R., Martín-Pérez, A. & Alonso-Zarza, A. M. 2010. The petrological studies as a tool to evaluate the degradation of speleothems in touristic caves. Castañar de Ibor Cave, Cáceres, Spain. In Advances in Research in Karst Media (eds Andreo, B., Carrasco, F., Durán, J. J. & LaMoreaux, J. A.), pp. 509–14. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Martín-Pérez, A., Martín-García, R., Alonso-Zarza, A. M. & Herrero-Fernández, M. J. 2010. Features and origin of red clays in Castañar Cave: a touch of colour. In Advances in Research in Karst Media (eds Andreo, B., Carrasco, F., Durán, J. J. & LaMoreaux, J. A.), pp. 515–20. Berlin: Springer-Verlag.Google Scholar
Martínez-Flores, E. 2005. Raña de Cañamero. In Patrimonio geológico en Extremadura: geodiversidad y lugares de interés geológico (eds Muñoz-Barco, P. & Martínez-Flores, E.), pp. 197203. Mérida: Dirección General de Medio Ambiente, Consejería de Agricultura y Medio Ambiente. Junta de Extremadura.Google Scholar
Morse, J. W. & Mackenzie, F. T. 1990. Geochemistry of Sedimentary Carbonates. Amsterdam: Elsevier, 707 pp.Google Scholar
Ninyerola, M., Pons, X. & Roure, J. M. 2005. Atlas Climático Digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica. Universidad Autónoma de Barcelona, Bellaterra.Google Scholar
Onac, B. P. 2005. Minerals. In Encyclopedia of Caves (eds Culver, D. C. & White, W. B.), pp. 371–8. London: Elsevier Academic Press.Google Scholar
Palmer, A. N. 2007. Cave Geology. Dayton, Ohio: Cave Books, 454 pp.Google Scholar
Palmer, A. N. & Palmer, M. V. 2003. Geochemistry of capillary seepage in Mammoth Cave. Speleogenesis and Evolution of Karst Aquifers 1.Google Scholar
Perdikouri, C., Kasioptas, A., Putnis, C. W. & Putnis, A. 2008. The effect of fluid composition on the mechanisms of the aragonite to calcite transitions. Mineralogical Magazine 72, 111–4.Google Scholar
Railsback, L. B., Brook, G. A., Chen, J., Kalin, R. & Fleisher, C. J. 1994. Environmental controls on the petrology of a late Holocene speleothem from Botswana with annual layers of aragonite and calcite. Journal of Sedimentary Research 64, 147–55.Google Scholar
Railsback, L. B., Dabous, A. A., Osmond, J. K. & Fleisher, C. J. 2002. Petrographic and geochemical screening of speleothems for U–series dating: an example from recrystallized speleothems from Wadi Sannur cavern, Egypt. Journal of Cave and Karst Studies 62, 108–16.Google Scholar
Sánchez-Moral, S., Cuezva, S., Lario, J. & Taborda-Duarte, M. 2006. Hydrochemistry of karstic waters in a low-energy cave (Castañar de Ibor, Spain). In Karst, cambio climático y aguas subterráneas (eds Durán, J. J., Andreo, B. & Carrasco, F.), pp. 339–47. Madrid: IGME.Google Scholar
Sancho, C., Peña, J. L., Mikkan, R., Osácar, C. & Quinif, Y. 2004. Morphological and speleothemic development in Brujas Cave (Southern Andean Range, Argentine): palaeoenvironmental significance. Geomorphology 57, 367–84.CrossRefGoogle Scholar
Scholz, D., Mühlinghaus, C. & Mangini, A. 2009. Modelling δ13C and δ18O in the solution layer on stalagmite surfaces. Geochimica et Cosmochimica Acta 73, 2592–602.CrossRefGoogle Scholar
Self, C. A. & Hill, C. A. 2003. How speleothems grow: an introduction to the ontogeny of cave minerals. Journal of Cave and Karst Studies 65, 130–51.Google Scholar
Silva, P. G., Zazo, C., Barjadi, T., Baena, J., Lario, J. & Rosas, A. 2007. Tabla cronoestratigráfica del Cuaternario de la Península Ibérica, AEQUA.Google Scholar
Tarhule-Lips, R. F. A. & Ford, D. C. 1998. Condensation corrosion in caves of Cayman Brac and Isla de Mona. Journal of Cave and Karst Studies 60, 8495.Google Scholar
Woo, K. S. & Choi, D. W. 2006. Calcitization of aragonite speleothems in limestone caves in Korea: diagenetic process in a semiclosed system. In Perspectives on Karst Geomorphology, Hydrology and Geochemistry – A tribute volume to Derek C. Ford and William B. White (eds Harmon, R. S. & Wicks, C.), pp. 297–30. Geological Society of America, Special Paper no. 404.Google Scholar
Zupan-Hajna, N. 2003. Incomplete Dissolution: Weathering of Cave Walls and the Production, Transport and Depo-sition of Carbonate Fines. Ljubljana: Karst Research Institute ZRC SAZU, 167 pp.Google Scholar
Supplementary material: Image

Alonso-Zarza supplementary material

Colour figure 5.tif

Download Alonso-Zarza supplementary material(Image)
Image 9.1 MB
Supplementary material: PDF

Alonso-Zarza supplementary material

Colour figure 3.pdf

Download Alonso-Zarza supplementary material(PDF)
PDF 21 MB
Supplementary material: Image

Alonso-Zarza supplementary material

Colour figure 6.tif

Download Alonso-Zarza supplementary material(Image)
Image 15 MB
Supplementary material: Image

Alonso-Zarza supplementary material

Colour figure 8.tif

Download Alonso-Zarza supplementary material(Image)
Image 25 MB