Published online by Cambridge University Press: 20 January 2022
The Eastern Depression in the Bayanhaote Basin in western Inner Mongolia has experienced multi-stage Meso-Cenozoic tectonic events and possesses considerable exploration potential. However, structural deformation patterns, sequences and the genesis of oil-bearing structures in the basin are still poorly understood. In this study, based on high-quality 2D seismic data and drilling and well-logging data, we elucidate the activities and structural styles of faults, the tectonic evolution and the distribution characteristics of styles, as well as assessing potential petroleum traps in the Eastern Depression. Five types of faults that were active at different stages of the Meso-Cenozoic faults have been recognized: long-lived normal faults active since the late Middle Jurassic; reverse faults and strike-slip faults active in the late Late Jurassic; normal faults active in the Early Cretaceous; normal faults active in the Oligocene; and negative inverted faults active in the Early Cretaceous and Oligocene. These faults constituted 12 geometric styles in NE-trending belts at various stratigraphic levels, and were formed by compression, strike-slip, extension and inversion. The temporal development of structural styles promoted the formation and reconstruction and finalization of structural traps, while regional unconformities and open reverse and strike-slip faults provided migration pathways for petroleum to fill the traps. In general, potential traps that formed by compressional movement and strike-slip movement in the late Late Jurassic are primarily faulted anticlines. Those traps developed in Carboniferous rocks and are located in the southwestern region of the Eastern Depression, being controlled by NNE-NE-striking reverse and transpressive faults.