Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-16T06:55:40.038Z Has data issue: false hasContentIssue false

Submarine ‘crystal tuffs’: their origin using a Lower Devonian example from southeastern Australia

Published online by Cambridge University Press:  01 May 2009

R. A. F. Cas*
Affiliation:
Department of Earth Sciences, Monash University, Clayton Victoria, Australia, 3168

Abstract

Summary. The submarine crystal-rich volcaniclastics of the Lower Devonian Merrions Tuff contain concentrations of angular to euhedral volcanic quartz, plagioclase and orthoclase. Lithic fragments, largely altered vitriclasts, are minor components and the average matrix content is 37.6%. Associated dacite/andesite and rhyodacitic lavas have average groundmass contents of 64.2%. Rare shards in the graded, pelitic tops of the thick volcaniclastic sedimentation units suggest that the mode of fragmentation originally was by explosive magmatic eruptions. The sedimentology of the volcaniclastics suggests subsequent redeposition by cold-state mass-flow processes. The volcaniclastics form an isotopically coherent suite and so redeposition must have occurred essentially contemporaneously with eruption.

The high crystal fragment concentration in these volcaniclastics is higher than lavas and ignimbrites and suggests some process whereby the groundmass fraction of the erupting magma is selectively removed, so concentrating the crystal fraction. The crystal-rich character of the crystal-tuffs is not simply due to explosive eruption. Several primary and secondary factors/processes could have interacted to ultimately produce the crystal-rich character, these being: (i) eruption of highly crystallized magmas (≤ 65% phenocrysts), (ii) concentration of crystals in primary eruption columns, (iii) concentration of crystals in any resulting pyroclastic flows, fine vitric ashes being elutriated out and being carried away in accompanying, trailing ash clouds, (iv) concentration of crystals in secondary eruption columns generated by the flow of hot pyroclastic flows into the ocean, and (v) concentration of crystals by the elutriation of fines into the trailing fine sediment cloud accompanying submarine mass flows resulting from the slumping of volcaniclastic aggregates from shallow marine/subaerial settings.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Birch, W. D. 1978. Petrogenesis of some Palaeozoic rhyolites in Victoria. J. geol. Soc. Aust. 25, 7587.CrossRefGoogle Scholar
Carey, S. N. & Sigurdsson, H. 1980. The Roseau Ash: deep-sea tephra deposits from a major eruption on Dominica, Lesser Antilles arc. J. Volcanol. Geotherm. Res. 7, 6786.CrossRefGoogle Scholar
Cas, R. A. F. 1978(a). Silicic lavas in Palaeozoic flysch-like deposits in New South Wales, Australia: Behaviour of deep subaqueous silicic flows. Bull. geol. Soc. Am. 89, 1708–14.2.0.CO;2>CrossRefGoogle Scholar
Cas, R. A. F. 1978(b). Basin characteristics of the Early Devonian part of the Hill End Trough based on a stratigraphic analysis of the Merrions Tuff. J. geol. Soc. Aust. 24, 381401.CrossRefGoogle Scholar
Cas, R. 1979. Mass-flow arenites from a Palaeozoic interarc basin, New South Wales, Australia: mode and environment of emplacement. J. sedim. Petrol. 49, 2944.Google Scholar
Cas, R. A. F., Flood, R. H. & Shaw, S. E. 1976. Hill End Trough: new radiometric ages. Search (Aust.) 7, 205–7.Google Scholar
Cas, R. A. F. & Jones, J. G. 1979. Paleozoic interarc basin in eastern Australia and a modern New Zealand analogue. N.Z. Jl Geol. Geophys. 22, 7185.CrossRefGoogle Scholar
Cas, R. A. F., Powell, C. McA., Fergusson, C. L., Jones, J. G., Roots, W. D. & Fergusson, J. 1981. The Kowmung Volcaniclastics: a deep-water sequence of mass-flow origin. J. geol. Soc. Aust. 28, 271–88.CrossRefGoogle Scholar
Clemens, J. D. & Wall, V. J. 1981. Origin and crystallization of some peraluminous (s-type) granitic magmas. Can. Mineralogist 19, 111–31.Google Scholar
Cummins, W. A. 1962. The greywacke problem. Lpool Mnchr geol. J. 3, 5172.CrossRefGoogle Scholar
Dickinson, W. R. 1962. Petrology and diagenesis of Jurassic andesitic strata in central Oregon. Am. J. Sci. 260, 481500.CrossRefGoogle Scholar
Ewart, A. 1965. Mineralogy and petrogenesis of the Whakamaru Ignimbrite in the Maraetai area of the Taupo Volcanic Zone, New Zealand. N.Z. Jl Geol. Geophys. 8, 611–77.CrossRefGoogle Scholar
Ewart, A. 1979. A review of the mineralogy and chemistry of Tertiary-Recent dacitic, latitic, rhyolitic, and related salic volcanic rocks. In Trondhjemites, dacites and related rocks (ed. F., Barker), pp. 13121. Elsevier.CrossRefGoogle Scholar
Fergusson, J. 1980. Yerranderie crater: a Devonian silicic eruptive centre within the Bindook Complex, New South Wales. J. geol. Soc. Aust. 27, 7582.CrossRefGoogle Scholar
Folk, R. L. 1980. Petrology of sedimentary rocks. Austin: Hemphills.Google Scholar
Fiske, R. S. & Matsuda, T. 1964. Submarine equivalents of ash flows in the Tokiwa Formation, Japan. Am. J. Sci. 262, 76106.CrossRefGoogle Scholar
Gorai, M. 1951. Petrological studies on plagioclase twins. Am. Mineralogist 36, 884901.Google Scholar
Hay, R. L. 1959. Formation of the crystal-rich glowing avalanche deposit of St Vincent. B.W.I.J. Geol. 67, 540–62.Google Scholar
Heiken, G. H. 1972. Morphology and petrography of volcanic ashes. Bull. geol. Soc. Am. 83, 1961–88.CrossRefGoogle Scholar
Heiken, G. H. 1974. An atlas of volcanic ash. Smithsonian Contributions to the Earth Sciences, no 12.Google Scholar
Honnorez, J. & Kirst, P. 1975. Submarine basaltic volcanism: morphometric parameters for discriminating hyaloclastites from hyalotuffs. Bull. Volcanol. 39, 125.CrossRefGoogle Scholar
Jones, J. G., McPhie, J. & Roots, W. D. 1977. A Devonian volcano at Yerranderie. Search (Aust.) 8, 242–4.Google Scholar
Marsh, B. D. 1981. On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib. Miner. Petrol. 78, 8598.CrossRefGoogle Scholar
McBirney, A. R. 1963. Factors governing the nature of submarine volcanism. Bull. Volcanol. 27, 455–69.CrossRefGoogle Scholar
Middleton, G. V. 1972. Albite of secondary origin in Charny Sandstones, Quebec. J. sedim. Petrol. 42, 341–9.Google Scholar
Packham, G. H. 1968. The Lower and Middle Palaeozoic stratigraphy and sedimentary tectonics of the Sofala-Hill End-Euchareena region N.S.W. Proc. Linn. Soc. N.S.W. 93, 111–63.Google Scholar
Packham, G. H. (ed.) 1969. The geology of New South Wales. J. geol. Soc. Aust. 19.Google Scholar
Pettijohn, F. J. 1975. Sedimentary Rocks. New York: Harper and Row.Google Scholar
Pichler, H. 1965. Acid hyaloclastites. Bull. Volcanol. 28, 293310.CrossRefGoogle Scholar
Pittman, E. D. 1970. Plagioclase feldspar as an indicator of provenance in sedimentary rocks. J. sedim. Petrol. 40, 591–8.Google Scholar
Roobol, M. J. 1976. Post-eruptive mechanical sorting of pyroclastic material - an example from Jamaica. Geol. Mag. 113, 429–40.CrossRefGoogle Scholar
Schmid, R. 1981. Descriptive nomenclature and classification of pyroclastic deposits and fragments: Recommendations of the IUGS subcommission on the systematics of igneous rocks. Geology 9, 41–3.2.0.CO;2>CrossRefGoogle Scholar
Self, S. & Sparks, R. S. J. 1978. Characteristics of widespread pyroclastic deposits formed by the interaction of silicic magma and water. Bull. Volcanol. 41, 117.CrossRefGoogle Scholar
Sigurdsson, H., Sparks, R. S. J., Carey, S. N. & Huang, T. D. 1980. Volcanogenic sedimentation in the Lesser Antilles Arc. J. Geol. 88, 523–40.CrossRefGoogle Scholar
Smith, R. E. 1969. Zones of progressive regional burial metamorphism in part of the Tasman Geosyncline, Eastern Australia. J. Petrology 10, 144–63.CrossRefGoogle Scholar
Sparks, R. S. J. & Walker, G. P. L. 1977. The significance of vitric enriched air-fall ashes associated with crystal-enriched ignimbrites. J. Volcanol. Geotherm. Res. 2, 329–41.CrossRefGoogle Scholar
Sparks, R. S. J. & Wilson, L. 1976. A model for the formation of ignimbrite by gravitational column collapse. J. geol. Soc. Lond. 132, 441–52.CrossRefGoogle Scholar
Steven, T. A. & Lipman, P. W. 1976. Calderas of the San Juan Volcanic Field, southwestern Colorado. Prof. Pap. U.S. geol. Surv. 958.Google Scholar
Tuttle, O. F. 1952. Origin of contrasting mineralogy of extrusive and intrusive salic rocks. J. Geol. 60, 107–24.CrossRefGoogle Scholar
van der Molen, I. & Paterson, M. S. 1979. Experimental deformation of partially-melted granite. Contrib. Miner. Petrol. 70, 299318.CrossRefGoogle Scholar
Walker, G. P. L. 1972. Crystal concentration in ignimbrites. Contrib. Miner. Petrol. 36, 135–46.CrossRefGoogle Scholar
Walker, G. P. L. 1979. A volcanic ash generated by explosions where ignimbrite entered the sea. Nature, Lond. 281, 642–6.CrossRefGoogle Scholar
Wright, J. V. & Mutti, E. 1981. The Dali Ash, Island of Rhodes, Greece: a problem in interpreting submarine volcanigenic sediments. Bull. Volcanol. 44, 153–67.CrossRefGoogle Scholar
Yamazaki, T., Kato, T., Muroi, I. & Abe, M. 1973. Textural analysis and flow mechanism of the Donzurobo subaqueous pyroclastic flow deposits. Bull. Volcanol. 37, 231–44.CrossRefGoogle Scholar