Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-14T22:22:38.976Z Has data issue: false hasContentIssue false

Textural responses to evolving mass-flows: an example from the Devonian Asen Formation, central Norway

Published online by Cambridge University Press:  01 May 2009

Reidulv Bøe
Affiliation:
Geological Survey of Norway, Leiv Eirikssons vei 39, P.O. Box 3006 – Lade, N-7002 Trondheim, Norway
Brian A. Sturt
Affiliation:
Geological Survey of Norway, Leiv Eirikssons vei 39, P.O. Box 3006 – Lade, N-7002 Trondheim, Norway

Abstract

The Asenvågoya Conglomerate is a thin (c. 6 m) conglomeratic body composed of mass-flow deposits and enveloped by braided-stream sandstones and conglomerates. The section studied represents the proximal part of a small-radius alluvial fan built out from the basin margin towards a flood basin. The fan was possibly generated by escarpment creation, or rejuvenation, in response to syndepositional faulting along the basin margin, and comprises sand-matrix-supported and clast-supported, sheet-like conglomerates. There is an upward change through the sequence from stream flow and surging mass-flow, through fully turbulent mass-flow and sheet flow to cohesive mass-flow deposits and then a return of braided-stream alluvium at the top of the sequence. The fan wedge demonstrates the wide range of textures possible within a ‘mass-flow” system.

Type
Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, K. C. 1976. Devonian spores from outer Trøndelag. Norsk Geologisk Tidsskrift 56, 437–48.Google Scholar
Bryhni, I. 1974. Old Red Sandstone of Hustadvika and an occurrence of dolomite at Flatskjer, Nordmøre. Norges Geologiske Undersøkelse 311, 4963.Google Scholar
Bøe, R. 1988. Alluvial channel bank-collapse phenomena in the Old Red Sandstone Hitra Group, Western Central Norway. Geological Magazine 125, 51–6.CrossRefGoogle Scholar
Bøe, R. 1989. A pre-Devonian pediment in the lowermost Old Red Sandstone Hitra Group, western Norway. Norsk Geologisk Tidsskrift 69, 21–8.Google Scholar
Bøe, R., Atakan, K. & Sturt, B. A. 1989. The style of deformation in the Devonian rocks on Hitra and Smøla, western Norway. Norges Geologiske Under-sokelse, Bulletin 414, 120.Google Scholar
Curry, R. R. 1966. Observation of alpine mudflows in the Tenmile Range, central Colorado. Geological Society of America Bulletin 77,771–6.CrossRefGoogle Scholar
Flint, S. & Turner, P. 1988. Alluvial fan and fan-delta sedimentation in a forearc extensional setting: the Cretaceous Coloso Basin of Northern Chile. In Fan Deltas: Sedimentology and Tectonic Settings (eds Nemec, W. and Steel, R. J.), pp. 387–99. Glasgow: Blackie and Son.Google Scholar
Gloppen, T. G. & Steel, R. J. 1981. The deposits, internal structure and geometry in six alluvial fan–fan delta bodies (Devonian–Norway) – a study in the significance of bedding sequence in conglomerates. Society of Economic Paleontologists and Mineralogists, Special Publication 31, 4969.Google Scholar
Harms, J. C., Southard, J. B., Spearing, D. R. & Walker, R. G. 1975. Depositional Environments as Interpreted from Primary Sedimentary Structures and Stratification Sequences. Dallas, Texas: Society of Economic Paleontologists and Mineralogists, Short Course No. 2, 161 pp.Google Scholar
Høeg, O. A. 1945. Contributions to the Devonian flora of western Norway. III. Norsk Geologisk Tidsskrift 25, 183–92.Google Scholar
Høeg, O. A. 1966. Devonfloraen i ytre Trøndelag. Blyttia 24, 218–21.Google Scholar
Jolley, E. J., Turner, P., Williams, G. D., Hartley, A. J. & Flint, S. 1990. Sedimentological response of an alluvialsystem to Neogene thrust tectonics, Atacama Desert, northern Chile. Journal of the Geological Society, London 147, 769–84.CrossRefGoogle Scholar
Kleinspehn, K. L., Steel, R. J., Johannesen, E. & Net-land, A. 1984. Conglomeratic fan-delta sequences, late Carboniferous–early Permian, western Spitsbergen. In Sedimentology of Gravels and Conglomerates (eds Koster, E. H. and Steel, R. J.), pp. 279–94. Calgary: Canadian Society of Petroleum Geologists, Memoir 10.Google Scholar
Larsen, V. & Steel, R. J. 1978. The sedimentary history of a debris flow-dominated, Devonian alluvial fan – a study of textural inversion. Sedimentology 25, 3759.CrossRefGoogle Scholar
Lawson, D. E. 1982. Mobilization, movement and deposition of active subaerial sediment flows, Matanuska Glacier, Alaska. Journal of Geology 90, 279300.CrossRefGoogle Scholar
Lewis, D. W., Laird, M. G. & Powell, R. D. 1980. Debris flow deposits of early Miocene age, Deadman Stream, Marlborough, New Zealand. Sedimentary Geology 27, 83118.CrossRefGoogle Scholar
Lowe, D. R. 1982. Sediment gravity flows. II. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Petrology 52, 279–97.Google Scholar
Marzo, M. & Anadòn, P. 1988. Anatomy of a conglomeratic fan-delta complex: the Eocene Montserrat Conglomerate, Ebro Basin, northeastern Spain. In Fan Deltas: Sedimentology and Tectonic Settings (eds Nemec, W. and Steel, R. J.), pp. 318–40. Glasgow: Blackie and Son.Google Scholar
Middleton, G. V. & Hampton, M. A. 1976. Subaqueous sediment transport and deposition by sediment gravity flows. In Marine Sediment Transport and Environmental Management (eds Stanley, D. J. and Swift, D. J. P.), pp.197218. New York: Wiley and Sons.Google Scholar
Nemec, W. & Muszynski, A. 1982. Volcaniclastic alluvial aprons in the Tertiary of Sofia District (Bulgaria). Annales Societatis Geologorum Poloniae 52, Nos. 14, 239–303.Google Scholar
Nemec, W. & Steel, R. J. 1984. Alluvial and coastal conglomerates: their significant features and some comments on gravelly mass-flow deposits. In Sedimentology of Gravels and Conglomerates (eds Koster, E. H. and Steel, R. J.), pp. 131. Calgary: Canadian Society of Petroleum Geologists, Memoir 10.Google Scholar
Nemec, W., Steel, R. J., Porebski, S. J. & Spinnanger, Å. 1984. Domba Conglomerate, Devonian, Norway: process and lateral variability in a mass flow-dominated, lacustrine fan-delta. In Sedimentology of Gravels and Conglomerates (eds Koster, E. H. and Steel, R. J.), pp.295320. Calgary: Canadian Society and Petroleum Geologists, Memoir 10.Google Scholar
Pierson, T. C. 1981. Dominant particle support mechanisms in debris flows at Mt Thomas, New Zealand, and implications for mobility. Sedimentology 28, 4960.CrossRefGoogle Scholar
Pierson, T. C. & Costa, J. E. 1987. A rheologic classification of subaerial sediment-water flows. In Debris Flows/Avalanches: Process, Recognition and Mitigation (eds Costa, J. E. and Wieczorek, G. F.), pp. 112. Boulder: The Geological Society of America, Reviews in Engineering Geology, Volume VII.Google Scholar
Pollard, J. E., Steel, R. J. & Undersrud, E. 1982. Facies sequences and trace fossils in lacustrine/fan delta deposits, Hornelen Basin (M. Devonian), western Norway. Sedimentary Geology 32, 6387.CrossRefGoogle Scholar
Postma, G. & Roep, T. B. 1985. Resedimented conglomerates in the bottomsets of Gilbert-type gravel deltas. Journal of Sedimentary Petrology 55, 874–85.Google Scholar
Postma, G., Nemec, W. & Kleinsphehn, K. L. 1988. Large floating clasts in turbidites: a mechanism for their emplacement. Sedimentary Geology 58, 4761.CrossRefGoogle Scholar
Rodine, J. D. 1974. Analysis of the Mobilization of Debris Flow. Report no. ARO 9973. 1–EN. Grant no. DA–ARO–D–31–124–71–G158, 226 pp. Stanford University, California. Durham, North Carolina: U.S. Army Research Office.Google Scholar
Sharp, R. P. & Nobles, L. H. 1953. Mudflow of 1941 at Wrightwood, southern California. Geological Society of America Bulletin 64, 547560.CrossRefGoogle Scholar
Siedlecka, A. 1975. Old Red Sandstone lithostratigraphy and sedimentation of the outer Fosen area, Trondheim region. Norges Geologiske Undersøkelse 321, 135.Google Scholar
Siedlecka, A. 1977. Carbonate deposition in the Old Red Sandstone formations of the coastal Trondheim region. In Norwegian Geotraverse Project, a Norwegian Contribution to the International Upper Mantle Project and the International Geodynamics Project (ed. Heier, K. S.), pp. 267–85. Oslo: Norges Allmennvitenskapelige Forskningsråd.Google Scholar
Siedlecka, A. & Siedlecki, S. 1972. A contribution to the geology of the Downtonian sedimentary rocks of Hitra. Norges Geologiske Undersøkelse 275, 128.Google Scholar
Steel, R. J. 1988. Coarsening-upward and skewed fan bodies: symptoms of strike-slip and transfer fault movement in sedimentary basins. In Fan Deltas: Sedimentology and Tectonic Settings (eds Nemec, W. and Steel, R. J.), pp. 7583. Glasgow: Blackie and Son.Google Scholar
Steel, R. J. & Aasheim, S. 1978. Alluvial sand deposition in a rapidly subsiding basin (Devonian, Norway). In Fluvial Sedimentology (ed. Miall, A. D.), pp. 385413. Calgary: Canadian Society of Petroleum Geologists, Memoir 5.Google Scholar
Todd, S. P. 1989. Stream-driven, high-density gravelly traction carpets: possible deposits in the Trabeg Conglomerate Formation, SW Ireland and some theoretical considerations of their origin. Sedimentology 36, 513–30.CrossRefGoogle Scholar
Vogt, T. 1929. Undersøkelser over den underdevonske konglomerat-sandstens serie i Ytre Trøndelagen. Norges Geologiske Undersøkelse 133, 5961.Google Scholar