Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T11:36:56.524Z Has data issue: false hasContentIssue false

Thermal maturation of a complete magmatic plumbing system at the Sierra de Velasco, Northwestern Argentina

Published online by Cambridge University Press:  14 August 2020

Marcos Macchioli Grande*
Affiliation:
Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (Provincia de La Rioja – UNLaR – SEGEMAR – UNCa – CONICET), Entre Ríos y Mendoza s/n, 5301Anillaco, Argentina Instituto de Geología y Recursos Naturales, Centro de Investigación e Innovación Tecnológica, Universidad Nacional de La Rioja (INGeReN – CENIIT – UNLaR), Avenida Gobernador Vernet y Apóstol Felipe, 5300La Rioja, Argentina
Pablo Alasino
Affiliation:
Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (Provincia de La Rioja – UNLaR – SEGEMAR – UNCa – CONICET), Entre Ríos y Mendoza s/n, 5301Anillaco, Argentina Instituto de Geología y Recursos Naturales, Centro de Investigación e Innovación Tecnológica, Universidad Nacional de La Rioja (INGeReN – CENIIT – UNLaR), Avenida Gobernador Vernet y Apóstol Felipe, 5300La Rioja, Argentina
Juan Dahlquist
Affiliation:
Centro de investigaciones en Ciencias de la Tierra (CICTERRA – CONICET – UNC), Haya de la Torre s/n, Ciudad Universitaria, X5016CACórdoba, Argentina
Matías Morales Cámera
Affiliation:
Centro de investigaciones en Ciencias de la Tierra (CICTERRA – CONICET – UNC), Haya de la Torre s/n, Ciudad Universitaria, X5016CACórdoba, Argentina
Carmen Galindo
Affiliation:
Departamento de Mineralogía y Petrología, Facultad de Ciencias Geológicas, Instituto de Geociencias (IGEO, CSIC), Universidad Complutense, 28040Madrid, Spain
Miguel Basei
Affiliation:
Instituto de Geociências da Universidade de São Paulo, Rua do Lago 562, 05508-080São Paulo, Brazil
*
Author for correspondence: Marcos Macchioli Grande, Email: mmacchioligrande@gmail.com

Abstract

The formation of magmatic plumbing systems in the crust involves mass and heat transfer from deep to shallow levels. This process modifies the local geotherm and increases the thermal maturation of the crust, affecting the rheological state of the host rock and the composition of magma. Here, we report a petrological, geochemical, isotopic and geochronological integrated study of the Huaco (354 Ma) and Sanagasta (353 Ma, from a new U–Pb zircon age) units from the Carboniferous (Lower Mississippian) Huaco Intrusive Complex, NW Argentina. Similar values of ϵNdt and δ18O, of −3.2 ± 0.7 and +11.2‰ ± 0.3‰ (V-SMOW), respectively, for both units indicate that they shared the same source, as a result of mixing and later homogenization of a crustal component at the Late Devonian (378 to 366 Ma), with metasomatized mantle-derived melts. Slightly higher contents of TiO2, FeO, MgO, CaO and rare earth elements for the Sanagasta unit in comparison with the Huaco unit suggest an increase in the degree of partial melting, which may have been caused by a higher temperature at the lower crust. In addition, the previous structural model of the Huaco Intrusive Complex points to an increase in thermal maturation in the upper crust, which drives a change in the emplacement style from tabular subhorizontal (Huaco) to vertically elongated (Sanagasta) bodies. Therefore, the evolution of the intrusive complex may reflect a generalized thermal maturation of the complete magmatic column, at both upper and lower crustal levels.

Type
Original Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Deceased

References

Alasino, PH, Casquet, C, Galindo, C, Pankhurst, RJ, Rapela, CW, Dahlquist, JA, Recio, C, Baldo, EG, Larrovere, MA and Ramacciotti, CD (2020) O-H-Sr-Nd isotope constraints on the origin of the Famatinian magmatic arc, NW Argentina. Geological Magazine 159. https://doi.org/10.1017/S0016756820000321.Google Scholar
Alasino, PH, Casquet, C, Pankhurst, RJ, Rapela, CW, Dahlquist, JA, Galindo, C, Larrovere, MA, Recio, C, Paterson, SR, Colombo, F and Baldo, EG (2016) Mafic rocks of the Ordovician Famatinian magmatic arc (NW Argentina): new insights into the mantle contribution. Geological Society of America Bulletin 128, 1105–20. doi: 10.1130/B31417.1.CrossRefGoogle Scholar
Alasino, PH, Dahlquist, JA, Galindo, C, Casquet, C and Saavedra, J (2010) Andalusite and Na- and Li-rich cordierite in the La Costa pluton, Sierras Pampeanas, Argentina: textural and chemical evidence for a magmatic origin. International Journal of Earth Sciences 99, 1051–65, https://doi.org/10.1007/s00531-009-0445-1.CrossRefGoogle Scholar
Alasino, PH, Dahlquist, JA, Pankhurst, RJ, Galindo, C, Casquet, C, Rapela, CW, Larrovere, MA and Fanning, CM (2012) Early Carboniferous sub- to mid-alkaline magmatism in the Eastern Sierras Pampeanas, NW Argentina: a record of crustal growth by the incorporation of mantle-derived material in an extensional setting. Gondwana Research 22, 9921008. doi: 10.1016/j.gr.2011.12.011.CrossRefGoogle Scholar
Alasino, PH, Larrovere, MA, Rocher, S, Dahlquist, JA, Basei, MAS, Memeti, V, Paterson, S, Galindo, C, Macchioli Grande, M and da Costa Campos Neto, M (2017) Incremental growth of an upper crustal, A-type pluton, Argentina: evidence of a re-used magma pathway. Lithos 284–285, 347–66. doi: 10.1016/j.lithos.2017.04.013.CrossRefGoogle Scholar
Annen, C, Blundy, JD, Leuthold, J and Sparks, RSJ (2015) Construction and evolution of igneous bodies: towards an integrated perspective of crustal magmatism. Lithos 230, 206–21. doi: 10.1016/j.lithos.2015.05.008.CrossRefGoogle Scholar
Annen, C, Blundy, JD and Sparks, RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology 47, 505–39. doi: 10.1093/petrology/egi084.CrossRefGoogle Scholar
Annen, C, Blundy, JD and Sparks, RSJ (2008) The sources of granitic melt in Deep Hot Zones. Transactions of the Royal Society of Edinburgh, Earth Sciences 97, 297309. doi: 10.1017/S0263593300001462.CrossRefGoogle Scholar
Barboni, M, Annen, C and Schoene, B 2015. Evaluating the construction and evolution of upper crustal magma reservoirs with coupled U/Pb zircon geochronology and thermal modeling: a case study from the Mt. Capanne pluton (Elba, Italy). Earth and Planetary Science Letters 432, 436–48. doi: 10.1016/j.epsl.2015.09.043.CrossRefGoogle Scholar
Bense, FA, Löbens, S, Dunkl, I, Wemmer, K and Siegesmund, S (2013) Is the exhumation of the Sierras Pampeanas only related to Neogene flat-slab subduction? Implications from a multi-thermochronological approach. Journal of South American Earth Sciences 48, 123–44. doi: 10.1016/j.jsames.2013.09.002.CrossRefGoogle Scholar
Boynton, WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In Rare Earth Element Geochemistry (ed Henderson, P), pp. 63114. Developments in Geochemistry no. 2. doi: 10.1016/B978-0-444-42148-7.50008-3.CrossRefGoogle Scholar
Cao, W, Kaus, BJP and Paterson, S (2016) Intrusion of granitic magma into the continental crust facilitated by magma pulsing and dike-diapir interactions: numerical simulations. Tectonics 35. doi: 10.1002/2015TC004076.CrossRefGoogle Scholar
Cashman, KV, Sparks, RSJ and Blundy, JD (2017) Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355. doi: 10.1126/science.aag3055.CrossRefGoogle ScholarPubMed
Casquet, C, Dahlquist, JA, Verdecchia, SO, Baldo, EG, Galindo, C, Rapela, CW, Pankhurst, RJ, Morales, MM, Murra, JA and Fanning, CM (2018) Review of the Cambrian Pampean orogeny of Argentina; a displaced orogen formerly attached to the Saldania Belt of South Africa? Earth-Science Reviews 177, 209–25. doi: 10.1016/j.earscirev.2017.11.013.CrossRefGoogle Scholar
Clemens, JD and Vielzeuf, D (1987) Constraints on melting and magma production in the crust. Earth and Planetary Science Letters 86, 287306. doi: 10.1016/0012-821X(87)90227-5.CrossRefGoogle Scholar
Cox, KG, Bell, JD and Pankhurst, RJ (1979) The Interpretation of Igneous Rocks. Berlin: Springer, 450 pp.CrossRefGoogle Scholar
Cruden, AR and Weinberg, RF (2018) Mechanisms of magma transport and storage in the lower and middle crust: magma segregation, ascent and emplacement. In Volcanic and Igneous Plumbing Systems: Understanding Magma Transport, Storage, and Evolution in the Earth’s Crust (ed. Burchardt, S.), pp. 1353. Amsterdam: Elsevier.CrossRefGoogle Scholar
Dahlquist, JA, Alasino, PH, Basei, MAS, Morales Cámera, MM, Macchioli Grande, M and da Costa Campos Neto, M (2018) Petrological, geochemical, isotopic, and geochronological constraints for the Late Devonian–Early Carboniferous magmatism in SW Gondwana (27–32°LS): an example of geodynamic switching. International Journal of Earth Sciences 107, 129. doi: 10.1007/s00531-018-1615-9.CrossRefGoogle Scholar
Dahlquist, JA, Alasino, PH, Eby, GN, Galindo, C and Casquet, C (2010) Fault controlled Carboniferous A-type magmatism in the proto-Andean foreland (Sierras Pampeanas, Argentina): geochemical constraints and petrogenesis. Lithos 115, 6581. doi: 10.1016/j.lithos.2009.11.006.CrossRefGoogle Scholar
Dahlquist, JA, Pankhurst, RJ, Gaschnig, RM, Rapela, CW, Casquet, C, Alasino, PH, Galindo, C and Baldo, EG (2013) Hf and Nd isotopes in Early Ordovician to Early Carboniferous granites as monitors of crustal growth in the Proto-Andean margin of Gondwana. Gondwana Research 23, 1617–30. doi: 10.1016/j.gr.2012.08.013.CrossRefGoogle Scholar
Dahlquist, JA, Macchioli Grande, M, Alasino, PH, Basei, MAS, Galindo, C, Moreno, JA and Morales Cámera, MM (2019) New geochronological and isotope data for the Las Chacras – Potrerillos and Renca batholiths: a contribution to the Middle-Upper Devonian magmatism in the pre-Andean foreland (Sierras Pampeanas, Argentina), SW Gondwana. Journal of South American Earth Sciences 93, 348–63. doi: 10.1016/j.jsames.2019.04.026.CrossRefGoogle Scholar
Dall’Agnol, R, Scaillet, B and Pichavant, M (1999) An experimental study of a Lower Proterozoic A-type granite from the Eastern Amazonian Craton, Brazil. Journal of Petrology 40, 1673–98. doi: 10.1093/petroj/40.11.1673.CrossRefGoogle Scholar
de los Hoyos, CR, Willner, AP, Larrovere, MA, Rossi, JN, Toselli, AJ and Basei, MAS (2011) Tectonothermal evolution and exhumation history of the Paleozoic Proto-Andean Gondwana margin crust: the Famatinian Belt in NW Argentina. Gondwana Research 20, 309–24. doi: 10.1016/j.gr.2010.12.004.CrossRefGoogle Scholar
Faure, G (1986) Principles of Isotope Geology. New York: John Wiley & Sons, 589 pp.Google Scholar
Frost, BR, Barnes, CG, Collins, WJ, Arculus, RJ, Ellis, DJ and Frost, CD (2001) A geochemical classification for granitic rocks. Journal of Petrology 42, 20332048. doi: 10.1093/petrology/42.11.2033.CrossRefGoogle Scholar
Gao, P, Zheng, YF and Zhao, ZF (2016a) Distinction between S-type and peraluminous I-type granites: zircon versus whole-rock geochemistry. Lithos 258–259, 7791. doi: 10.1016/j.lithos.2016.04.019.CrossRefGoogle Scholar
Gao, P, Zheng, YF and Zhao, ZF (2016b) Experimental melts from crustal rocks: a lithochemical constraint on granite petrogenesis. Lithos 266–267, 133–57. doi: 10.1016/j.lithos.2016.10.005.CrossRefGoogle Scholar
Garcia-Arias, M and Stevens, G (2017) Phase equilibrium modelling of granite magma petrogenesis: A. An evaluation of the magma compositions produced by crystal entrainment in the source. Lithos 277, 131–53. doi: 10.1016/j.lithos.2016.09.027.CrossRefGoogle Scholar
Grosse, P, Bellos, LI, de los Hoyos, CR, Larrovere, MA, Rossi, JN and Toselli, AJ (2011) Across-arc variation of the Famatinian magmatic arc (NW Argentina) exemplified by I-, S- and transitional I/S-type Early Ordovician granitoids of the Sierra de Velasco. Journal of South American Earth Sciences 32, 110–26. doi: 10.1016/j.jsames.2011.03.014.CrossRefGoogle Scholar
Grosse, P, Söllner, F, Báez, MA, Toselli, AJ, Rossi, JN and de la Rosa, JD (2009) Lower Carboniferous post-orogenic granites in central-eastern Sierra de Velasco, Sierras Pampeanas, Argentina: U–Pb monazite geochronology, geochemistry and Sr–Nd isotopes. International Journal of Earth Sciences 98, 1001–25. doi: 10.1007/s00531-007-0297-5.CrossRefGoogle Scholar
Hines, R, Paterson, SR, Memeti, V and Chambers, JA (2018) Nested incremental growth of zoned upper crustal plutons in the Southern Uplands Terrane, UK: fractionating, mixing, and contaminated magma fingers. Journal of Petrology 59, 483516. doi: 10.1093/petrology/egy034.CrossRefGoogle Scholar
Hoefs, J and Emmermann, R (1983) The oxygen isotope composition of Hercynian granites and pre-Hercynian gneisses from the Schwarzwald, SW Germany. Contributions to Mineralogy and Petrology 83, 320–9. doi: 10.1007/BF00371200.CrossRefGoogle Scholar
Johannes, W and Holtz, F (1996) Petrogenesis and Experimental Petrology of Granitic Rocks. Minerals and Rocks series 22. Berlin: Springer Verlag, 355 pp.CrossRefGoogle Scholar
Johnson, DM, Hooper, PR and Conrey, RM (1999) XRF analysis of rocks and minerals for major and trace elements on a single low dilution Li-tetraborate fused bead. Advances in X-ray Analysis 41, 843–67.Google Scholar
Jordan, TE and Allmendinger, RW (1986) The Sierras Pampeanas of Argentina: a modern analogue of Rocky Mountain foreland deformation. American Journal of Science 286, 737–64. doi: 10.2475/ajs.286.10.737.CrossRefGoogle Scholar
Karakas, O, Degruyter, W, Bachmann, O and Dufek, J (2017) Lifetime and size of shallow magma bodies controlled by crustal-scale magmatism. Nature Geoscience 10, 446–50. doi: 10.1038/ngeo2959.CrossRefGoogle Scholar
Larrovere, MA, Alasino, PH and Baldo, EG (2016) La faja de cizalla dúctil doble-vergente del noroeste de la sierra de velasco: deformación de la corteza media durante la orogenia famatiniana. Revista de la Asociación Geológica Argentina 73, 117–33.Google Scholar
Larrovere, MA, de los Hoyos, CR and Grosse, P (2012) Los complejos metamórficos del retro-arco famatiniano (noroeste de argentina): caracterización geoquímica e isotópica de sus protolitos e implicancias geotectónicas. Revista Mexicana de Ciencias Geologicas 29, 676–95.Google Scholar
Larrovere, MA, de los Hoyos, CR, Willner, AP, Verdecchia, SO, Baldo, EG, Casquet, C, Basei, MAS, Hollanda, MH, Rocher, S, Alasino, PH and Moreno, GG (2020) Mid-crustal deformation in a continental margin orogen: structural evolution and timing of the Famatinian orogeny, NW Argentina. Journal of the Geological Society 177, 233–57. doi: 10.1144/jgs2018-230.CrossRefGoogle Scholar
Liu, CZ, Wu, FY, Chung, SL, Li, QL, Sun, WD and Ji, WQ (2014) A ‘hidden’ 18O-enriched reservoir in the sub-arc mantle. Scientific Reports 4, 16. doi: 10.1038/srep04232.Google ScholarPubMed
Löbens, S, Bense, FA, Wemmer, K, Dunkl, I, Costa, CH, Layer, P and Siegesmund, S (2010) Exhumation and uplift of the Sierras Pampeanas: preliminary implications from K–Ar fault gouge dating and low-T thermochronology in the Sierra de Comechingones (Argentina). International Journal of Earth Sciences 100, 671–94. doi: 10.1007/s00531-016-1403-3.CrossRefGoogle Scholar
López de Luchi, MG, Siegesmund, S, Wemmer, K and Nolte, N (2017) Petrogenesis of the postcollisional Middle Devonian monzonitic to granitic magmatism of the Sierra de San Luis, Argentina. Lithos 288–289, 191213. doi: 10.1016/j.lithos.2017.05.018.CrossRefGoogle Scholar
Ludwig, K (2008) Isoplot/Ex 3.70. A geochronological tool for Microsoft Excel. Berkeley, California: Berkeley Geochronology Center Special Publication 4.Google Scholar
Macchioli Grande, M, Alasino, PH, Rocher, S, Larrovere, MA and Dalhquist, JD (2015) Asymmetric textural and structural patterns of a granitic body emplaced at shallow levels: the La Chinchilla pluton, north-western Argentina. Journal of South American Earth Sciences 64, 5868. doi: 10.1016/j.jsames.2015.09.011.CrossRefGoogle Scholar
Macchioli Grande, M, Alasino, PH, Rocher, S, Larrovere, MA, Uran, GM, Reinoso Carbonell, V and Moreno, G (2019) Thermal evolution of upper crustal magmatic systems from the Sierra de Velasco, NW Argentina. Journal of Structural Geology 118, 120. doi: 10.1016/j.jsg.2018.10.006.CrossRefGoogle Scholar
Melekhova, E, Annen, C and Blundy, J (2013) Compositional gaps in igneous rock suites controlled by magma system heat and water content. Nature Geoscience 6, 385–90. doi: 10.1038/ngeo1781.CrossRefGoogle Scholar
Middlemost, EAK (1985) Magmas and Magmatic Rocks. Harlow: Longman, 266 pp.Google Scholar
Miller, JS, Matzel, JEP, Miller, CF, Burgess, SD and Miller, RB (2007) Zircon growth and recycling during the assembly of large, composite arc plutons. Journal of Volcanology and Geothermal Research 167, 282–99. doi: 10.1016/j.jvolgeores.2007.04.019.CrossRefGoogle Scholar
Miller, CF, McDowell, SM and Mapes, RW (2003) Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31, 529–32. doi: 10.1130/0091-7613(2003)031%3C0529:HACGIO%3E2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Moyen, J-F, Champion, D and Smithies, RH (2009) The geochemistry of Archaean plagioclase-rich granites as a marker of source enrichment and depth of melting. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 100, 3550. doi: 10.1017/S1755691009016132.CrossRefGoogle Scholar
Paterson, SR, Okaya, D, Memeti, V, Economos, R and Miller, RB (2011) Magma addition and flux calculations of incrementally constructed magma chambers in continental margin arcs: combined field, geochronologic, and thermal modeling studies. Geosphere 7, 1439–68. doi: 10.1130/GES00696.1.CrossRefGoogle Scholar
Patiño Douce, AE (1999) What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In Understanding Granites (eds Castro, A., Fernández, C., Vigneresse, J.L.), pp. 5575. Geological Society of London, Special Publication no. 168.Google Scholar
Petford, N, Cruden, AR, McCaffrey, KJW and Vigneresse, JL (2000) Granite magma formation, transport and emplacement in the Earth’s crust. Nature 408, 669–73.CrossRefGoogle ScholarPubMed
Rapela, CW, Pankhurst, RJ, Casquet, C, Dahlquist, JA, Fanning, CM, Baldo, EG, Galindo, C, Alasino, PH, Ramacciotti, CD, Verdecchia, SO, Murra, JA and Basei, MAS (2018) A review of the Famatinian Ordovician magmatism in southern South America: evidence of lithosphere reworking and continental subduction in the early proto-Andean margin of Gondwana. Earth-Science Reviews 187, 259–85. doi: 10.1016/j.earscirev.2018.10.006.CrossRefGoogle Scholar
Read, HH (1962) Donegal as a natural laboratory for metamorphic geology. In ISM. Geological Society, S. K. Roy Commemoration Bulletin, pp. 913. Dhanbad: Indian School of Mines.Google Scholar
René, M, Holtz, F, Luo, C, Beermann, O and Stelling, J (2008) Biotite stability in peraluminous granitic melts: compositional dependence and application to the generation of two-mica granites in the South Bohemian batholith (Bohemian Massif, Czech Republic). Lithos 102, 538–53. doi: 10.1016/j.lithos.2007.07.022.CrossRefGoogle Scholar
Rossi, JN, Toselli, AJ and López, JP (1999) Deformación y metamorfismo en el NW de la sierra de Velasco, La Rioja, Argentina. Zentralblatt Für Geologie Und Paläontologie Abhandlungen 1, 839–850.Google Scholar
Sato, K, Basei, MAS, Ferreira, CM, Sproeser, WM, Vlach, SRF, Ivanuch, W and Onoi, AT (2011) U-Th-Pb analyses by eximer laser ablation/ICP-MS on MG Brazilian xenotime. Mineralogical Magazine 75, 1801.Google Scholar
Shand, SJ (1943) Eruptive Rocks. Their Genesis, Composition, Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite. London: Thomas Murby & Co., 444 pp.Google Scholar
Shea, EK, Miller, JS, Miller, RB, Bowring, SA and Sullivan, KM (2016) Growth and maturation of a mid- to shallow-crustal intrusive complex, North Cascades, Washington. Geosphere 12, 1489–516. doi: 10.1130/GES01290.1.CrossRefGoogle Scholar
Skjerlie, KP and Johnston, AD (1993) Fluid-absent melting behavior of an F-rich tonalitic gneiss at mid-crustal pressures: implications for the generation of anorogenic granites. Journal of Petrology 34, 785815. doi: 10.1093/petrology/34.4.785.CrossRefGoogle Scholar
Solano, JMS, Jackson, MD, Sparks, RSJ, Blundy, JD and Annen, C (2012) Melt segregation in deep crustal hot zones: a mechanism for chemical differentiation, crustal assimilation and the formation of evolved magmas. Journal of Petrology 53, 19992026. doi: 10.1093/petrology/egs041.CrossRefGoogle Scholar
Söllner, F, Gerdes, A, Grosse, P and Toselli, A (2007) U-Pb age determinations by LA-ICP-MS on zircons of the Huaco Granite, Sierra de Velasco (NW Argentina): a long term history of melt activity within an igneous activity. In 20th Colloquium of Latin American Earth Sciences, 10–13 April 2007, Kiel, Germany, pp. 57–8. Kiel, Universität-Kiel.Google Scholar
Söllner, F, Grosse, P, Gerdes, A, Toselli, AJ and Rossi, JN (2009) U-Pb LA-ICP-MS age determinations of growth impulses in zircons from Carboniferous post-orogenic granites, Sierra de Velasco (NW-Argentina). In International Lateinamerika-Kollokquium (eds. G. Wörner and S. Möller-McNett), 7-9 April 2009, Göttingen, Germany, pp. 267–9. Göttingen, Universitätsverlag, Göttingen.Google Scholar
Stevens, G, Clemens, JD and Droop, GTR (1997) Melt production during granulite-facies anatexis: experimental data from ‘primitive’ metasedimentary protoliths. Contributions to Mineralogy and Petrology 128, 352–70. doi: 10.1007/s004100050314.CrossRefGoogle Scholar
Stevens, G, Villaros, A and Moyen, J-F (2007) Selective peritectic garnet entertainment as the origin of geochemical diversity in S-type granites. Geology 35, 912. doi: 10.1130/G22959A.1.CrossRefGoogle Scholar
Sun, S-s and McDonough, WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, AD and Norry, MJ), pp. 313–45. Geological Society of London, Special Publication no. 42. doi: 10.1144/GSL.SP.1989.042.01.19.Google Scholar
Sylvester, PJ (1998) Post-collisional strongly peraluminous granites. Lithos 45, 2944. doi: 10.1016/S0024-4937(98)00024-3.CrossRefGoogle Scholar
Tischendorf, G, Förster, H-J, Gottesmann, B and Rieder, M (2007) True and brittle micas: composition and solid-solution series. Mineralogical Magazine 71, 285320. doi: 10.1180/minmag.2007.071.3.285.CrossRefGoogle Scholar
Verdecchia, SO, Baldo, EG, Benedetto, JL and Borghi, PA (2007) The first shelly fauna from metamorphic rocks of the Sierras Pampeanas (La Cébila Formation, Sierra de Ambato, Argentina): age and paleogeographic implications. Ameghiniana 44, 493–8.Google Scholar
Villaros, A, Stevens, G, Moyen, J-F and Buick, IS (2009) The trace element compositions of S-type granites: evidence for disequilibrium melting and accessory phase entrainment in the source. Contributions to Mineralogy and Petrology 158, 543–61. doi: 10.1007/s00410-009-0396-3.CrossRefGoogle Scholar
Weinberg, RF, Becchio, R, Farias, P, Suzaño, N and Sola, A (2018) Early Paleozoic accretionary orogenies in NW Argentina: growth of West Gondwana. Earth–Science Reviews 187, 219–47.CrossRefGoogle Scholar
Whitney, DL and Evans, BW (2010) Abbreviations for names of rock-forming minerals. American Mineralogist 95, 185–7. doi: 10.2138/am.2010.3371.CrossRefGoogle Scholar
Yoshinobu, AS, Okaya, DA and Paterson, SR (1998) Modeling the thermal evolution of fault-controlled magma emplacement models: implications for the solidification of granitoid plutons. Journal of Structural Geology 20, 1205–18. doi: 10.1016/S0191-8141(98)00064-9.CrossRefGoogle Scholar
Supplementary material: File

Macchioli Grande et al. supplementary material

Macchioli Grande et al. supplementary material

Download Macchioli Grande et al. supplementary material(File)
File 7.5 MB