Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T04:49:40.070Z Has data issue: false hasContentIssue false

A Tonian age for the Visingsö Group in Sweden constrained by detrital zircon dating and biochronology: implications for evolutionary events

Published online by Cambridge University Press:  06 March 2017

MAŁGORZATA MOCZYDŁOWSKA*
Affiliation:
Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, SE 752 36 Uppsala, Sweden
VICTORIA PEASE
Affiliation:
Stockholm University, Department of Geological Sciences, PetroTectonics Facility, Svante Arrhenius väg 8, SE 106 91 Stockholm, Sweden
SEBASTIAN WILLMAN
Affiliation:
Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, SE 752 36 Uppsala, Sweden
LINDA WICKSTRÖM
Affiliation:
Geological Survey of Sweden, Box 670, SE 751 28, Uppsala, Sweden
HEDA AGIĆ
Affiliation:
Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, SE 752 36 Uppsala, Sweden
*
Author for correspondence: malgo.vidal@pal.uu.se

Abstract

Detrital zircon U–Pb ages from samples of the Neoproterozoic Visingsö Group, Sweden, yield a maximum depositional age of ≤ 886±9 Ma (2σ). A minimum depositional age is established biochronologically using organic-walled and vase-shaped microfossils present in the upper formation of the Visingsö Group; the upper formation correlates with the Kwagunt Formation of the 780–740 Ma Chuar Group in Arizona, USA, and the lower Mount Harper Group, Yukon, Canada, that is older than 740 Ma. Mineralized scale microfossils of the type recorded from the upper Fifteenmile Group, Yukon, Canada, where they occur in a narrow stratigraphic range and are younger than 788 Ma, are recognized for the first time outside Laurentia. The mineralized scale microfossils in the upper formation of the Visingsö Group seem to have a wider stratigraphic range, and are older than c. 740 Ma. The inferred age range of mineralized scale microfossils is 788–740 Ma. This time interval coincides with the vase-shaped microfossil range because both microfossil groups co-occur. The combined isotopic and biochronologic ages constrain the Visingsö Group to between ≤ 886 and 740 Ma, thus Tonian in age. This is the first robust age determination for the Visingsö Group, which preserves a rich microfossil assemblage of worldwide distribution. The organic and mineralized microorganisms preserved in the Visingsö Group and coeval successions elsewhere document global evolutionary events of auto- and heterotrophic protist radiations that are crucial to the reconstruction of eukaryotic phylogeny based on the fossil record and are useful for the Neoproterozoic chronostratigraphic subdivision.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agić, H., Moczydłowska, M. & Yin, L.-M. 2015. Affinity, life cycle, and intracellular complexity of organic-walled microfossils from the Mesoproterozoic of Shanxi, China. Journal of Paleontology 89, 2850.CrossRefGoogle Scholar
Agić, H., Moczydłowska, M. & Willman, S. 2015. Prasinophyte world: biodiversity of organic-walled microfossils from the Cryogenian Visingsö Group, Sweden. In 2015 Geological Society of America Annual Meeting, 2015 Baltimore, Maryland, USA, Abstracts. Geological Society of America Abstracts with Programs 47 (7), 143.Google Scholar
Allen, P. A. & Etienne, J. L. 2008. Sedimentary challenge to Snowball Earth. Nature Geosciences 1, 817–25.CrossRefGoogle Scholar
Allison, C. W. & Awramik, S. M. 1989. Organic-walled microfossils from earliest Cambrian or latest Proterozoic Tindir Group Rocks, northwest Canada. Precambrian Research 43, 253–94.CrossRefGoogle Scholar
Allison, C. W. & Hilgert, J. W. 1986. Scale microfossils from the Early Cambrian of northwest Canada. Journal of Paleontology 60, 9731015.CrossRefGoogle Scholar
Anbar, A. D., Duan, Y., Lyons, T. W., Arnold, G. L., Kendall, B., Creaser, R. A., Kaufman, A. J., Gordon, G. W., Scott, C., Garvin, J. & Buick, R. 2007. A whiff of oxygen before the Great Oxidation Event? Science 317, 1903–6.CrossRefGoogle ScholarPubMed
Anbar, A. D. & Knoll, A. H. 2002. Proterozoic ocean chemistry and evolution: a bioinorganic bridge. Science 297, 1137–42.CrossRefGoogle ScholarPubMed
Arnaud, E., Halverson, G.P. & Shields-Zhou, G. (eds). 2011. The Geological Record of Neoproterozoic Glaciations. Geological Society of London, Memoir no. 36, 735 pp.Google Scholar
Bekker, A., Holland, H. D., Wang, P.-L., Rumble III, D., Stein, H. J., Hannah, J. L., Coetzee, L. L. & Beukes, N. J. 2004. Dating the rise of atmospheric oxygen. Nature 427, 117–20.CrossRefGoogle ScholarPubMed
Bingen, B., Belousova, E. A. & Griffin, W. L. 2011. Neoproterozoic recycling of the Sveconorwegian orogenic belt: detrital-zircon data from the Sparagmite basins in the Sveconorwegian Caledonides. Precambrian Research 189, 347–67.CrossRefGoogle Scholar
Bloeser, B. 1985. Melanocyrillium, a new genus of structurally complex Late Proterozoic microfossils from the Kwagunt Formation (Chuar Group), Grand Canyon, Arizona. Journal of Paleontology 59, 41765.Google Scholar
Bonhomme, M. G. & Welin, E. 1983. Rb–Sr and K–Ar isotopic data on shale and siltstone from the Visingsö Group, Lake Vättern basin, Sweden. Geologiska Föreningens i Stockholm Förhandlingar 105, 363–6.CrossRefGoogle Scholar
Bosak, T., Lahr, D. J. G., Pruss, S. B., Macdonald, F. A., Gooday, A. J., Dalton, L. & Matys, E. 2012. Possible early foraminiferans in post-Sturtian (716–635 Ma) cap carbonates. Geology 40, 6770.CrossRefGoogle Scholar
Bosak, T., Macdonald, F., Lahr, D. & Matys, E. 2011. Putative Cryogenian ciliates from Mongolia. Geology 39, 1123–6.CrossRefGoogle Scholar
Butterfield, N. J. 2000. Bangiomorpha pubescens n. gen.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of euakaryotes. Paleobiology 26, 386404.2.0.CO;2>CrossRefGoogle Scholar
Butterfield, N. J. 2009. Oxygen, animals, and oceanic ventilation: an alternative view. Geobiology 7, 17.CrossRefGoogle ScholarPubMed
Butterfield, N. J. 2011. Animals and the invention of the Phanerozoic Earth system. Trends in Ecological and Evolution 26, 81–7.CrossRefGoogle ScholarPubMed
Canfield, D. E. 1998. A new model for Proterozoic ocean chemistry. Nature 396, 450–53.CrossRefGoogle Scholar
Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J.-X. 2015a. The ICS International Chronostratigraphic Chart, v2015/01. http://www.stratigraphy.org/ICSchart/ChronostratChart2015-01.pdf.Google Scholar
Cohen, P. A. & Knoll, A. H. 2012. Scale microfossils from the mid-Neoproterozoic Fifteenmile Group, Yukon Territory. Journal of Paleontology 86, 775800.CrossRefGoogle Scholar
Cohen, P. A. & Macdonald, F. A. 2015. The Proterozoic record of Eukaryotes. Paleobiology 41, 610–32.CrossRefGoogle Scholar
Cohen, P. A., Macdonald, F. A., Pruss, S., Matys, E. & Bosak, T. 2015b. Fossils of putative marine algae from the Cryogenian glacial interlude of Mongolia. Palaios 30, 238–47.CrossRefGoogle Scholar
Cohen, P. A., Schopf, J. W., Butterfield, N. J., Kudryavtsev, A. B. & Macdonald, F. A. 2011. Phosphate biomineralization in mid-Neoproterozoic protists. Geology 39, 539–42.CrossRefGoogle Scholar
Corsetti, F. A. 2015. Life during Neoproterozoic Snowball Earth. Geology 43, 559–60.CrossRefGoogle Scholar
Corsetti, F. A., Awramik, S. M. & Pierce, D. 2003. A complex microbiota from Snowball Earth times: microfossils from the Neoproterozoic Kingston Peak Formation, Death Valley, USA. Proceedings of the National Academy of Sciences USA 100, 4399–404.CrossRefGoogle ScholarPubMed
Cox, G. M., Jarrett, A., Edwards, D., Crockford, P. W., Halverson, G., Collins, A. S., Poirier, A. & Li, Z.-X. 2016. Basin redox and primary productivity within the Mesoproterozoic Roper Seaway. Chemical Geology 440, 101–14.CrossRefGoogle Scholar
Dehler, C. M. 2014. Advances in Neoproterozoic biostratigraphy spark new correlations and insight in evolution of life. Geology 42, 731–2.CrossRefGoogle Scholar
Dehler, C. M., Elrick, M., Bloch, J. D., Crossey, L. J., Karstrom, K. E. & Des Marais, D. J. 2005. High-resolution ∂13C stratigraphy of the Chuar Group (ca. 770–742 Ma), Grand Canyon: implications for mid-Proterozoic climate change. Geological Society of America Bulletin 117, 3245.CrossRefGoogle Scholar
Eyles, N. & Januszczak, N. 2007. “Zipper-rift”: a tectonic model for Neoproterozoic glaciations during the breakup of Rodinia after 750 Ma. Earth-Science Reviews 65, 173.CrossRefGoogle Scholar
Falkowski, P. G. & Raven, J. A. 2007. Aquatic Photosynthesis. Princeton and Oxford: Princeton University Press, 484 pp.CrossRefGoogle Scholar
Grey, K. 2005. Ediacaran palynology of Australia. Association of Australasian Palaeontologists Memoir 31, 1439.Google Scholar
Grey, K. 2007. The world of the very small: fueling the Animalia. In The Rise of Animals Evolution and Diversification of the Kingdom Animalia (eds Fedonkin, M. A., Gehling, J. G., Grey, K., Narbonne, G. M. & Vickers-Rich, P.), pp. 219–31. Baltimore: The Johns Hopkins University Press.Google Scholar
Halverson, G. P., Wade, B. P., Hurtgen, M. T. & Barovich, K. M. 2010. Neoproterozoic chemostratigraphy. Precambrian Research 182, 337–50.CrossRefGoogle Scholar
Hoffman, P. F. & Schrag, D. P. 2002. The Snowball Earth hypothesis: testing the limits of global change. Terra Nova 14, 129–55.CrossRefGoogle Scholar
Holland, H. 2002. Volcanic gases, black smokers, and the Great Oxidation Event. Geochimica et Cosmochimica Acta 66, 3811–26.CrossRefGoogle Scholar
Horodyski, R. J. 1993. Paleontology of Proterozoic shales and mudstones: examples from the Belt Supergroup, Chuar Group and Pahrump Group, western USA. Precambrian Research 61, 241–78.CrossRefGoogle Scholar
Jackson, T. A. 2015. Variations in the abundance of photosynthetic oxygen through Precambrian and Paleozoic time in relation to biotic evolution and mass extinctions: evidence from Mn/Fe ratios. Precambrian Research 264, 30–5.CrossRefGoogle Scholar
Jankauskas, T. V., Mikhailova, N. S. & German, T. N. (eds). 1989. Microfossili Dokembriya SSSR (Precambrian Microfossils of the USSR). Trudy Instituta Geologii i Geochronologii Dokembrya SSSR. Leningrad: Akademia Nauk, 188 pp. (in Russian).Google Scholar
Javaux, E., Knoll, A. H. & Walter, M. R. 2004. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology 2, 121–32.CrossRefGoogle Scholar
Johnston, D. T., Poulton, S. W., Dehler, C., Porter, S., Husson, J., Canfield, D. E. & Knoll, A. H. 2010. An emerging picture of Neoproterozoic ocean chemistry: insights from the Chuar Group, Grand Canyon, USA. Earth and Planetary Science Letters 290, 6473.CrossRefGoogle Scholar
Kaufman, A. J., Corsetti, F. A. & Varni, M. A. 2007. The effect of rising atmospheric oxygen on carbon and sulfur isotope anomalies in the Neoproterozoic Johnnie Formation, Death Valley, USA. Chemical Geology 237, 4763.CrossRefGoogle Scholar
Knoll, A. H. 1994. Proterozoic and Early Cambrian protists: evidence for accelerating evolutionary tempo. Proceedings of the National Academy of Sciences USA 91, 6743–50.CrossRefGoogle ScholarPubMed
Knoll, A. H. 2014. Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harbor Perspectives in Biology 6, a016121, 14 pp. doi: 10.1101/cshperspect.a016121.CrossRefGoogle ScholarPubMed
Knoll, A. H., Javaux, E. J., Hewitt, D. & Cohen, P. 2006. Eukaryotic organisms in Proterozoic oceans. Philosophical Transactions of the Royal Society London, Series B 361, 1023–38.CrossRefGoogle ScholarPubMed
Knoll, A. H. & Vidal, G. 1980. Late Proterozoic vase-shaped microfossils from the Visingsö Beds, Sweden. Geologiska Föreningen i Stockholm Förhandlingar 102, 2017–211.CrossRefGoogle Scholar
Lalonde, S. V. & Konhauser, K. O. 2015. Benthic perspective on Earth's oldest evidence for oxygenic photosynthesis. Proceedings of the National Academy of Sciences USA 112, 9951000.CrossRefGoogle ScholarPubMed
Lamb, D. M., Awramik, S. M., Chapman, D. J. & Zhu, S. 2009. Evidence for eukaryotic diversification in the ~1800 million-year-old Changzhougou Formation, North China. Precambrian Research 173, 93104.CrossRefGoogle Scholar
Larsen, M. & Nørgaard-Pedersen, N. 1988. A Sedimentological Analysis of Deltaic Complexes and Alluvial Fan Deposits in the Visingsö Group (Upper Proterozoic), Southern Sweden, Vol. l. Institut for Almen Geologi Københavns Universitet, 199 pp.Google Scholar
Lenton, T. M., Boyle, R. A., Poulton, S. W., Shields-Zhou, G. A. & Butterfield, N. J. 2014. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic Era. Nature Geoscience 7, 257–65.CrossRefGoogle Scholar
Li, Z.-X., Evens, D. A. D. & Halverson, G. P. 2013. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland. Sedimentary Geology 294, 219–32.CrossRefGoogle Scholar
Li, C., Planavsky, N. J., Love, G. D., Reinhard, C. T., Hardisty, D., Feng, L., Bates, S. M., Huang, J., Zhang, Q., Chu, X. & Lyons, T.W. 2015. Marine redox conditions in the middle Proterozoic ocean and isotopic constraints on authigenic carbonate formation: insights from the Chuanlinggou Formation, Yanshan Basin, North China. Geochimica et Cosmochimica Acta 150, 90105.CrossRefGoogle Scholar
Liu, P., Xiao, S., Yin, C., Chen, S., Zhou, C. & Li, M. 2014. Ediacaran acanthomorphic acritarchs and other microfossils from chert nodules of the Upper Doushantuo Formation in the Yangtze Gorges area, South China. Journal of Paleontology 88, 1139.CrossRefGoogle Scholar
Loron, C. 2016. The biodiversity of organic-walled eukaryotic microfossils from the Tonian Visingsö Group, Sweden. M.Sc. thesis, Department of Earth Sciences, Uppsala University, Uppsala, Sweden. Nr 366, 103 pp. Published thesis.Google Scholar
Love, G. D., Grosjean, E., Stalvies, C., Fike, D. A., Grotzinger, J. P., Bradley, A. S., Kelly, A. E., Bhatia, M., Meredith, W., Snape, C. E., Bowring, S. A., Condon, D. J. & Summons, R. E. 2009. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457, 718–21.CrossRefGoogle ScholarPubMed
Ludwig, K. 2012. Isoplot/Ex Version 3.75, A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication no. 5, pp. 75.Google Scholar
Lundmark, A. M. & Lamminen, J. 2016. The provenance and setting of the Mesoproterozoic Dala Sandstone, western Sweden, and paleogeographic implications for southwestern Fennoscandia. Precambrian Research 275, 197208.CrossRefGoogle Scholar
Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature 506, 307–15.CrossRefGoogle ScholarPubMed
Macdonald, F. A., Cohen, P. A., Dudás, F. Ö. & Schrag, D. P. 2010a. Early Neoproterozoic scale microfossils in the Lower Tindir Group of Alaska and the Yukon territory. Geology 38, 143–6.CrossRefGoogle Scholar
Macdonald, F. A. & Roots, C. F. 2010. Upper Fifteenmile Group in the Ogilvie Mountains and correlations of early Neoproterozoic strata in the northern Cordillera. In Yukon Exploration and Geology 2009 (eds MacFarlane, K. E., Weston, L. H. & Blackburn, L. R.), pp. 237–52. Yukon Geological Survey.Google Scholar
Macdonald, F. A., Schmitz, M. D., Crowley, J. L., Roots, C. F., Jones, D. S., Maloof, A. C., Strauss, J. V., Cohen, P. A., Johnston, D. T. & Schrag, D. P. 2010b. Calibrating the Cryogenian. Science 327, 1241–3.CrossRefGoogle ScholarPubMed
Macdonald, F. A., Smith, E. F., Strauss, J. V., Cox, G. M., Halverson, G. P. & Roots, C. F. 2011. Neoproterozoic and early Paleozoic correlations in the western Ogilvie Mountains, Yukon. In Yukon Exploration and Geology 2010 (eds MacFarlane, K. E., Weston, L. H. & Relf, C.), pp. 161–82. Yukon Geological Survey.Google Scholar
Magnusson, N. H. 1960. Age determination of Swedish Precambrian rocks. Geologisk Föreningens i Stockholm Förhandlingar 82, 407–32.CrossRefGoogle Scholar
Martí Mus, M. & Moczydłowska, M. 2000. Internal morphology and taphonomic history of the Neoproterozoic vase-shaped microfossils from the Visingsö Group, Sweden. Norsk Geologisk Tidsskrift 80, 213–28.Google Scholar
Milles, B., Watson, A. J., Goldblatt, C., Boyle, R. & Lenton, T. M. 2011. Timing of Neoproterozoic glaciations linked to transport-limited global weathering. Nature Geoscience 4, 861–4.CrossRefGoogle Scholar
Moczydłowska, M. 2008a. The Ediacaran microbiota and the survival of Snowball Earth conditions. Precambrian Research 167, 115.CrossRefGoogle Scholar
Moczydłowska, M. 2008b. New records of late Ediacaran microbiota from Poland. Precambrian Research 167, 7192.CrossRefGoogle Scholar
Moczydłowska, M. 2016. Algal affinities of the Ediacaran and Cambrian organic-walled microfossils with internal reproductive bodies: Tanarium and other morphotypes. Palynology 40, 83121.CrossRefGoogle Scholar
Moczydłowska, M., Landing, E., Zang, W. & Palacios, T. 2011. Proterozoic phytoplankton and timing of Chlorophyte algae origins. Palaeontology 54, 721–33.CrossRefGoogle Scholar
Moczydłowska, M. & Nagovitsin, K. 2012. Ediacaran radiation of organic-walled microbiota recorded in the Ura Formation, Patom Uplift, East Siberia. Precambrian Research 198–199, 124.CrossRefGoogle Scholar
Möller, C., Andersson, J., Dyck, B. & Lundin, I. 2015. Exhumation of an eclogite terrane as a hot migmatitic nappe, Sveconorwegian orogeny. Lithos 226, 147–68.CrossRefGoogle Scholar
Morad, S. & Al-Aasm, I. S. 1994. Conditions of formation and diagenetic evolution of Upper Proterozoic phosphate nodules from southern Sweden: evidence from petrology, mineral chemistry and isotopes. Sedimentary Geology 88, 267–82.CrossRefGoogle Scholar
Mukherjee, I. & Large, R. R. 2016. Pyrite trace element chemistry of the Velkerri Formation, Roper Group, McArthur Basin: evidence for atmospheric oxygenation during the Boring Billion. Precambrian Research 281, 1326.CrossRefGoogle Scholar
Nagy, R. M., Porter, S. M., Dehler, C. M. & Shen, Y. 2009. Biotic turnover driven by eutrophication before the Sturtian low-latitude glaciation. Nature Geoscience 2, 415–8.CrossRefGoogle Scholar
Narbonne, G. M. 2005. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annual Reviews of Earth and Planetary Sciences 33, 421–42.CrossRefGoogle Scholar
Narbonne, G. M., Xiao, S. & Shields, G. A. 2012. The Ediacaran Period. In The Geologic Time Scale 2012, Vol. 1, (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.), pp. 413–35. Amsterdam: Elsevier.CrossRefGoogle Scholar
Ogurtsova, R. N. & Sergeev, V. N. 1989. Megaspheromorphids from the Upper Precambrian Chichkanskaya Formation, southern Kazakhstan. Paleontologicheskii Zhurnal 2, 119–22 (in Russian).Google Scholar
Partin, C. A., Bekker, A., Planavsky, N. J., Scott, C. T., Gill, B. C., Li, C., Podkovyrov, V., Maslov, A., Konhauser, K. O., Lalonde, S. V., Love, G. D., Poulton, S. W. & Lyons, T. W. 2013. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shale. Earth and Planetary Sciences Letters 369–370, 284–93.CrossRefGoogle Scholar
Pease, V., Daly, J. S., Elming, S.-Å., Kumpulainen, R., Moczydłowska, M., Puchkov, V., Roberts, D., Saintot, A. & Stephenson, R. 2008. Baltica in the Cryogenian, 850–630 Ma. Precambrian Research 160, 4665.CrossRefGoogle Scholar
Planavsky, N. J., Reinhard, C. T., Wang, X., Thomson, D., Mcgoldrick, P., Rainbird, R. H., Johnson, T., Fischer, W. & Lyons, T. W. 2014. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346, 635–8.CrossRefGoogle ScholarPubMed
Planavsky, N. J., Tarhan, L. G., Bellefroid, E. J., Evans, D. A. D., Reinhard, C. T., Love, G. D. & Lyons, T. W. 2015. Late Proterozoic transitions in climate, oxygen, and tectonics, and the rise of complex life. In Earth-Life Transitions: Paleobiology in the Context of Earth System Evolution (eds Polly, P. D., Head, J. J. & Fox, D. L.), pp. 136. The Paleontological Society Papers 21.Google Scholar
Porter, S. M. 2006. The Proterozoic fossil record of heterotrophic eukaryotes. In Neoproterozoic Geobiology and Paleobiology (eds Xiao, S. & Kaufman, A. J.), pp. 121. Dordrecht: Springer.Google Scholar
Porter, S. M. & Knoll, A. H. 2000. Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in Chuar Group, Grand Canyon. Paleobiology 26, 360–85.2.0.CO;2>CrossRefGoogle Scholar
Porter, S. M., Meinsterfeld, R. & Knoll, A. H. 2003. Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae. Journal of Paleontology 77, 409–29.2.0.CO;2>CrossRefGoogle Scholar
Porter, S. M. & Riedman, L. A. 2016. Systematics of organic-walled microfossils from the ca. 780–740 Ma Chuar Group, Grand Canyon, Arizona. Journal of Paleontology 90, 815–53.CrossRefGoogle Scholar
Poulton, S. W. & Canfield, D. E. 2011. Ferruginous conditions: a dominant feature of the ocean through Earth's history. Elements 7, 107–12.CrossRefGoogle Scholar
Riedman, A. L., Porter, S. M., Halverson, G. P., Hurtgen, M. T. & Junium, C. K. 2014. Organic-walled microfossil assemblage from glacial and interglacial Neoproterozoic units of Australia and Svalbard. Geology 42, 1011–14.CrossRefGoogle Scholar
Sahoo, S. K., Planavsky, N. J., Jiang, G., Kendall, B., Owens, J. D., Wang, X., Shi, X., Anbar, A. D. & Lyons, T. W. 2016. Oceanic oxygenation events in the Ediacaran ocean. Geobiology 14, 457–68.CrossRefGoogle ScholarPubMed
Schirrmeister, B. E., Gugger, M. & Donoghue, P. C. J. 2015. Cyanobacteria and the Great Oxidation Event: evidence from genes and fossils. Palaeontology 58, 769–85.CrossRefGoogle ScholarPubMed
Schopf, J. W. 1992. Proterozoic Prokaryotes: affinities, geologic distribution, and evolutionary trends. In The Proterozoic Biosphere A Multidisciplinary Study (eds Schopf, J. W. & Klein, C.), pp. 195218. New York: Cambridge University Press.CrossRefGoogle Scholar
Sergeev, V. N. 2006. Precambrian microfossils on cherts: their paleobiology, classification and biostratigraphic usefulness. Moscow, GEOS, Transactions of the Geological Institute 567, 1280 (in Russian).Google Scholar
Sergeev, V. N., Knoll, A. H., Vorobeva, N. G. & Sergeeva, N. D. 2016. Microfossils from the lower Mesoproterozoic Kaltasy Formation, East European Platform. Precambrian Research 278, 87107.CrossRefGoogle Scholar
Sergeev, V. N. & Schopf, J. W. 2010. Taxonomy, paleoecology and biostratigraphy of the Late Neoproterozoic Chichkan microbiota of South Kazakhstan: the marine biosphere on the eve of metazoan radiation. Journal of Paleontology 84, 363401.CrossRefGoogle Scholar
Söderlund, U., Isachsen, C., Bylund, G., Heaman, L. M., Patchett, P. J., Vervoort, J. & Andersson, U. B. 2005. U–Pb baddeleyite ages and Hf, Nd isotope chemistry constraining repeated mafic magmatism in the Fennoscandian Shield from 1.6 to 0.9 Ga. Contributions to Mineralogy and Petrology 150, 174–94.CrossRefGoogle Scholar
Spence, G. H., Le Heron, D. L. & Fairchild, I. J. 2016. Sedimentological perspectives on climatic, atmospheric and environmental change in the Neoproterozoic Era. Sedimentology 63, 253306.CrossRefGoogle Scholar
Sperling, E. A., Frieder, C. A., Raman, A. V., Girguis, P. R., Levin, L. A. & Knoll, A. H. 2013. Oxygen, ecology, and the Cambrian radiation of animals. Proceedings of the National Academy of Sciences USA 110, 13446–51.CrossRefGoogle ScholarPubMed
Stephens, M. B., Ripa, M., Lundström, I., Persson, L., Bergman, T., Ahl, M., Wahlgren, C. H., Persson, P. O. & Wickström, L. 2009. Synthesis of the Bedrock Geology in the Bergslagen Region. Fennoscandian Shield, South-Central Sweden. Sveriges geologiska undersökning (SGU) Report, Serie Ba 58, 259 pp.Google Scholar
Strauss, J. V., Rooney, A. D., Macdonald, F. A., Brandon, A. D. & Knoll, A. H. 2014. 740 Ma vase-shaped microfossils from Yukon, Canada: implications for Neoproterozoic chronology and biostratigraphy. Geology 42, 659–62.CrossRefGoogle Scholar
Swanson-Hysell, N. L., Maloof, A. C., Condon, D. J., Jenkin, G. R. T., Alene, M., Tremblay, M. M., Tesema, T., Rooney, A. D. & Haileab, B. 2015. Stratigraphy and geochronology of the Tambien Group, Ethiopia: evidence for globally synchronous carbon isotope change in the Neoproterozoic. Geology 43, 323–6.CrossRefGoogle Scholar
Tang, Q., Pang, K., Xiao, S., Yuan, X., Ou, Z. & Wan, B. 2013. Organic-walled microfossils from the early Neoproterozoic Liulaobei Formation in the Huinan region of North china and their biostratigraphic significance. Precambrian Research 236, 157–81.CrossRefGoogle Scholar
Tang, Q., Pang, K., Yuan, X., Wan, B. & Xiao, S. M. 2015. Organic-walled microfossils from the Tonian Gouhou Formation, Huaibei region, North China Craton, and their biostratigraphic implications. Precambrian Research 266, 296318.CrossRefGoogle Scholar
Tang, D., Shi, X., Wang, X. & Jiang, G. 2016. Extremely low oxygen concentration in mid-Proterozoic shallow seawaters. Precambrian Research 276, 145–57.CrossRefGoogle Scholar
Turner, E. C. & Bekker, A. 2016. Thick sulfate evaporate accumulations marking a mid-Neoproterozoic oxygenation event (Ten Stone Formation, Northwest Territories, Canada). Geological Society of America Bulletin 128, 203–22.Google Scholar
Ulmius, J., Andersson, J. & Möller, C. 2015. Hallandian 1.45 Ga high-temperature metamorphism in Baltica: P–T evolution and SIMS U–Pb zircon ages of aluminous gneisses, SW Sweden. Precambrian Research 265, 1039.CrossRefGoogle Scholar
Van Kranendonk, M. J., Altermann, W., Beard, B. L., Hoffmsan, P. F., Johnson, C. M., Kasting, J. F., Melezhik, V. A., Nuyman, A. P., Papineau, D. & Pirajno, F. 2012. A chronostratigraphic division of the Precambrian. In The Geologic Time Scale 2012, Vol. 1 (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.), pp. 299392. Amsterdam: Elsevier.CrossRefGoogle Scholar
Vidal, G. 1972. Algal stromatolites from the Late Precambrian of Sweden. Lethaia 5, 353–68.CrossRefGoogle Scholar
Vidal, G. 1974. Late Precambrian microfossils from the basal sandstone unit of the Visingsö Beds, South Sweden. Geologica et Palaeontologica 8, 114.Google Scholar
Vidal, G. 1976. Late Precambrian microfossils from the Visingsö Beds in southern Sweden. Fossils and Strata 9, 157.CrossRefGoogle Scholar
Vidal, G. 1979. Acritarchs from the Upper Proterozoic and Lower Cambrian of East Greenland. Grønlands Geologiske Undersøgelse Bulletin 134, 140.CrossRefGoogle Scholar
Vidal, G. 1982. Den prepaleozoiska sedimentära berggrunden. In Description to the Map of Solid Rocks Hjo NO, pp. 5276. Sveriges geologiska undersökning, Serie Af 120.Google Scholar
Vidal, G. 1985. Prepaleozoisk sedimentberggrund. In Beskrivning till Bergrundskartan Hju SO (Description to the Map of Solid Rocks Hju SO) (eds Persson, L., Brunn, Å. & Vidal, G.), pp. 7791. Sveriges geologiska undersökning, Serie Af 134.Google Scholar
Vidal, G. 1994. Early ecosystems: limitations imposed by the fossil record. In Early Life on Earth (ed. Bengtson, S.), pp. 298311. Nobel Symposium No. 84. New York: Columbia University Press.Google Scholar
Vidal, G. & Ford, T. 1985. Microbiotas from the late Proterozoic Chuar Group (northern Arizona) and Uinta Mountain Group (Utah) and their chronostratigraphic implications. Precambrian Research 28, 349489.CrossRefGoogle Scholar
Vidal, G. & Moczydłowska, M. 1995. The Neoproterozoic of Baltica–stratigraphy, palaeobiology and general geologic evolution. Precambrian Research 73, 197216.CrossRefGoogle Scholar
Vidal, G. & Moczydłowska-Vidal, M. 1997. Biodiversity, speciation, and extinction trends of Proterozoic and Cambrian phytoplankton. Paleobiology 23, 230–46.CrossRefGoogle Scholar
Viola, G., Henderson, I. H. C., Bingen, B. & Hendriks, B. W. H. 2011. The Grenvillian–Sveconorwegian orogeny in Fennoscandia: back-thrusting and extensional shearing along the “Mylonite Zone”. Precambrian Research 189, 368–88.CrossRefGoogle Scholar
Xiao, S., Shen, B., Tang, Q., Kaufman, A. J., Yuan, X., Li, J. & Qian, M. 2014a. Biostratigraphic and chemostratigraphic constraints on the age of early Neoproterozoic carbonate successions in North China. Precambrian Research 246, 208–25.CrossRefGoogle Scholar
Xiao, S., Zhou, C., Liu, P., Wang, D. & Yuan, X. 2014b. Phosphatized acanthomorphic acritarchs and related microfossils from the Ediacaran Doushantuo Formation at Weng'an (South China) and their implications for biostratigraphic correlation. Journal of Paleontology 88, 167.CrossRefGoogle Scholar
Yan, Y. & Liu, Z. 1993. Significance of eukaryotic organisms in the microfossil flora of Changcheng System. Acta Micropalaeontologica Sinica 10, 167–80.Google Scholar
Ye, Q., Tong, J., Xiao, S., Zhu, S., An, Z., Tian, L. & Hu, J. 2015. The survival of benthic macroscopic phototrophs on a Neoproterozoic Snowball Earth. Geology 43, 507–10.CrossRefGoogle Scholar
Zhang, W., Roberts, D. & Pease, V. 2015. Provenance characteristics and regional implications of Neoproterozoic, Timanian-margin successions and a basal Caledonian nappe in northern Norway. Precambrian Research 268, 153–67.CrossRefGoogle Scholar
Zhang, S., Wang, X., Wang, H., Bjerrum, C. J., Hammarlund, E. U., Costa, M. M., Connelly, J. N., Zhang, B., Su., J. & Canfield, D. E. 2016. Sufficient oxygen for animal respiration 1,400 million years ago. Proceedings of the National Academy of Sciences USA 113, 1731–6.CrossRefGoogle Scholar
Supplementary material: PDF

Moczydłowska supplementary material

Appendix 1

Download Moczydłowska supplementary material(PDF)
PDF 677.4 KB
Supplementary material: File

Moczydłowska supplementary material

Table 1

Download Moczydłowska supplementary material(File)
File 416.6 KB